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Abstract

A reduction theorem for Jacobi–Nijenhuis manifolds is established and its relation with the
reduction of homogeneous Poisson–Nijenhuis structures is shown. Reduction under Lie group
actions is also studied. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The notion of Jacobi–Nijenhuis structure was introduced by Marrero et al. [7]. Recently,
the authors gave, in [13], a more strict definition of that structure which generalises, in a
natural way, the notion of Poisson–Nijenhuis manifold introduced by Magri and Morosi
[3,6] for better understanding the completely integrable hamiltonian systems.

In this paper, we intend to study the reduction of Jacobi–Nijenhuis structures. Mainly,
we define a foliation on a submanifold of a Jacobi–Nijenhuis manifold in such a way
that the manifold of the leaves is also endowed with a Jacobi–Nijenhuis structure. Since
a Jacobi–Nijenhuis manifold carries a Jacobi structure and, on the other hand, there is a
close relation between Jacobi–Nijenhuis manifolds and homogeneous Poisson–Nijenhuis
manifolds, we were inspired in some technical arguments used in the reduction methods of
both Jacobi [9,10] and Poisson–Nijenhuis manifolds [14], in order to achieve our goal.
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This paper is organised as follows. In Section 2, we review some basic facts about Jacobi
manifolds, including the reduction method. In Section 3, we give a reduction theorem for
homogeneous Poisson–Nijenhuis manifolds, which is adapted from the Poisson–Nijenhuis
reduction theorem of Vaisman [14]. Section 4 is devoted to Jacobi–Nijenhuis manifolds. We
recall the essential definitions and the notions of associated homogeneous Poisson–Nijenhuis
manifold and conformal equivalence. In Section 5, we establish a reduction theorem for
Jacobi–Nijenhuis manifolds, we study the reduction of conformally equivalent Jacobi–
Nijenhuis structures and we show how the homogeneous Poisson–Nijenhuis reduction is
related with the Jacobi–Nijenhuis reduction. Section 6 concerns the reduction of Jacobi–
Nijenhuis structures under Lie group actions. The two cases presented are examples of
the reduction theorem of previous section. In the first case, we obtain a Jacobi–Nijenhuis
structure on the space of the orbits of a Lie group action. In the second, the action has a
momentum map and the Jacobi–Nijenhuis structure is defined on a quotient of a level set
of that momentum map.

Notation: In the following, we will denote byM aC∞-differentiable manifold of finite
dimension, byC∞(M) the algebra ofC∞ real-valued functions onM, byΩk(M),k ∈ N, the
space ofk-forms onM, and byVk(M), k ∈ N, the space of skew-symmetric contravariant
k-tensors onM.

2. Jacobi manifolds

We consider the manifoldM endowed with a 2-tensorΛ and a vector fieldE. The
following bracket onC∞(M),

{f, g} = Λ(df,dg)+ 〈f dg − g df,E〉, f, g ∈ C∞(M), (1)

is bilinear and skew-symmetric, and satisfies the Jacobi identity if and only if

[Λ,Λ] = −2E ∧Λ and [E,Λ] = 0, (2)

where [, ] denotes the Schouten bracket [4]. When conditions (2) are verified, the pair(Λ,E)

defines aJacobi structureonM and(M,Λ,E) is called aJacobi manifold. The bracket (1)
is theJacobi bracketand(C∞(M), {, }) is a local Lie algebra in the sense of Kirillov (cf.
[2]). If the vector fieldE identically vanishes onM, conditions (2) reduce to [Λ,Λ] = 0,
andM is endowed with aPoisson structure.

We denote byΛ# : T ∗M → TM and(Λ,E)# : T ∗M × R → TM× R the vector bundle
maps associated withΛ and(Λ,E), respectively; i.e., for allα, β sections ofT ∗M and
f ∈ C∞(M),

〈β,Λ#(α)〉 = Λ(α, β) (3)

and

(Λ,E)#(α, f ) = (Λ#(α)+ fE,−〈α,E〉). (4)

These vector bundle maps can be considered as homomorphisms ofC∞(M)-modules,Λ# :
Ω1(M) → V1(M) and(Λ,E)# : Ω1(M)× C∞(M) → V1(M)× C∞(M), respectively.
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For anyf ∈ C∞(M), the vector field onM

Xf = Λ#(df )+ fE, (5)

is called thehamiltonian vector fieldassociated withf .
The spaceΩ1(M) × C∞(M) possesses a Lie algebra structure whose bracket{, } is

defined as follows (cf. [1]): for all(α, f ), (β, g) ∈ Ω1(M)× C∞(M),

{(α, f ), (β, g)} := (γ, h), (6)

where

γ := LΛ#(α)β − LΛ#(β)α − d(Λ(α, β))+ fLEβ − gLEα − iE(α ∧ β),

h := −Λ(α, β)+Λ(α,dg)−Λ(β,df )+ 〈f dg − g df,E〉,
(L is the Lie derivative operator).

Let a ∈ C∞(M) be a function which vanishes nowhere onM. For allf, g ∈ C∞(M),
we may define

{f, g}a := 1

a
{af,ag}. (7)

This new bracket{, }a onC∞(M) defines another Jacobi structure(Λa,Ea) onM, which
is said to bea-conformalto the initially given one. The two Jacobi structures(Λ,E) and
(Λa,Ea) are said to beconformally equivalentand

Λa = aΛ, Ea = Λ#(da)+ aE. (8)

A homogeneous Poisson manifold(M,Λ, T ) is a Poisson manifold(M,Λ)with a vector
field T ∈ V1(M) such that

LTΛ = [T ,Λ] = −Λ. (9)

Homogeneous Poisson manifolds are closely related to Jacobi manifolds. With each
Jacobi manifold(M,Λ,E)we may associate a homogeneous Poisson manifold(M̃, Λ̃, T̃ ),
with

M̃ = M × R, Λ̃ = e−t

(
Λ+ ∂

∂t
∧ E

)
and T̃ = ∂

∂t
, (10)

wheret is the usual coordinate onR [5]. The manifold(M̃, Λ̃, T̃ ) is called thePoissonization
of (M,Λ,E).

Let us now recall the reduction procedure for Jacobi manifolds.

Theorem 2.1(Mikami [9] and Nunes da Costa [10]).Let(M,Λ,E) be a Jacobi manifold,
S a submanifold ofM and F a vector sub-bundle ofTSM, which satisfy the following
conditions:

1. the distribution TS∩ F is completely integrable and the foliation ofS defined by this
distribution is simple, i.e., all the leaves have the same dimension and the setŜ of
leaves has the structure of a differentiable manifold for which the canonical projection
π : S → Ŝ is a submersion;
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2. for anyf, h ∈ C∞(M) with differentialsdf anddh, restricted toS, vanishing onF ,
the differentiald{f, h}, restricted toS, vanishes onF ;

3. if F 0 ⊂ T ∗
S M denotes the annihilator ofF , then (Λ|S)#(F 0) ⊂ TS+ F , and the

restriction ofE to S is a differentiable section of TS+ F .

Then, there exists on̂S a unique Jacobi structure(Λ̂, Ê) whose associated bracket is given,
for any f̂ , ĥ ∈ C∞(Ŝ) and any differentiable extensionsf of f̂ ◦ π andh of ĥ ◦ π with
differentialsdf anddh, restricted toS, vanish onF , by

{f̂ , ĥ} ◦ π = {f, h} ◦ i, (11)

wherei is the canonical injection ofS in M.
The Jacobi manifold(Ŝ, Λ̂, Ê) is said to have been obtained from(M,Λ,E)by reduction

via (S, F ).

Let λ : TSM → TSbe a (projection) vector bundle map such that its restriction toTSis
the identity map andF ⊂ Kerλ. Then, the Jacobi structures(Λ,E) onM and(Λ̂, Ê) on
Ŝ are related by the formulae:

Λ̂#
π(x) = Txπ ◦ λx ◦Λ#

i(x) ◦ tλx ◦ tTxπ, x ∈ S, (12)

Ê ◦ π = T π ◦ λ ◦ E ◦ i. (13)

We remark that the transpose ofλ, tλ : T ∗S → T ∗
S M, is the injection that extends each

linear form onS to a linear form onM that vanishes onKerλ.

3. Reduction of homogeneous Poisson–Nijenhuis manifolds

This section is devoted to Poisson–Nijenhuis and homogeneous Poisson–Nijenhuis
manifolds. We give a reduction theorem for homogeneous Poisson–Nijenhuis manifolds.

A Nijenhuis operatoron a differentiable manifoldM is a tensor fieldN of type (1,1)
which has a vanishing Nijenhuis torsion:

T (N)(X,Z) = [NX,NZ] −N [NX, Z] −N [X,NZ] +N2[X,Z] = 0,

X,Z ∈ V1(M).

A Poisson–Nijenhuis manifold(M,Λ0, N) is a Poisson manifold(M,Λ0) with a
Nijenhuis tensorN which is compatible withΛ0, i.e.: (i) NΛ#

0 = Λ#
0

tN , wheretN is
the transpose ofN , and (ii) the mapΛ#

0 ◦C(Λ0, N) : Ω1(M)×Ω1(M) → V1(M) identi-
cally vanishes onM.C(Λ0, N) is theMagri–Morosi concomitantof Λ0 andN [6] defined,
for all (α, β) ∈ Ω1(M)×Ω1(M), by

C(Λ0, N)(α, β) = {α, β}1 − {tNα, β}0 − {α, tNβ}0 + tN{α, β}0, (14)

where{, }i is the bracket associated withΛi , Λ#
i = NiΛ#

0, i = 0,1, that defines a Lie
algebra structure onΩ1(M) [3]. N is called therecursion operatorof (M,Λ0, N).

In what concerns the reduction procedure, remark that, when a Jacobi manifold is Poisson,
Theorem 2.1 is the Marsden–Ratiu Poisson reduction theorem [8]. This last one was refined
by Vaisman [14] in order to include the Poisson–Nijenhuis case.
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Theorem 3.1(Vaisman [14]).Let (M,Λ,N) be a Poisson–Nijenhuis manifold, S a sub-
manifold ofM andF a vector sub-bundle ofTSM verifying conditions 1 and 2 of Theorem
2.1.3 Moreover, ifN |S(TS) ⊂ TS, N |S(F ) ⊂ F , N |S sends projectable vector fields to
projectable vector fields, and(Λ|S)#(F 0) ⊂ TS, then there exists on̂S a Poisson–Nijenhuis
structure(Λ̂, N̂), obtained from(Λ,N) by reduction via(S, F ).

The Poisson tensor̂Λ on Ŝ is associated with the vector bundle mapΛ̂# given by (12)
and the tensor̂N of type(1,1) on Ŝ is given by

N̂ = T π ◦ λ ◦N |S ◦ λ−1
h ◦ (T π)−1

h , (15)

whereλh is the restriction ofλ to TS⊂ TSM, which is the identity map, and(T π)h is the
restriction ofT π to the horizontal vector sub-bundle ofTSwith respect to the decomposition
TS≡ T Ŝ ⊕ (TS∩ F).

Let us introduce a tensor fieldNS of type(1,1) on the submanifoldS by setting

NS = λ ◦N |S ◦ λ−1
h . (16)

Then (15) can be written as

N̂ = T π ◦NS ◦ (T π)−1
h . (17)

Definition 3.2. A homogeneous Poisson–Nijenhuis manifold(M,Λ,N, T ) is a Poisson–
Nijenhuis manifold(M,Λ,N) with a vector fieldT ∈ V1(M) such that

LTΛ = −Λ and LTN = 0. (18)

Remark 3.3. Conditions (18) assure that, for allk ∈ N, LTΛk = −Λk, whereΛk is
the Poisson tensor associated withΛ#

k = NkΛ. That is, all the members of the hierarchy
(Λk, k ∈ N) are homogeneous Poisson tensors onM with respect to the vector fieldT .

Theorem 3.1 can easily be adapted to include homogeneous Poisson–Nijenhuis reduction
case.

Theorem 3.4. Let (M,Λ,N, T ) be a homogeneous Poisson–Nijenhuis manifold, S a sub-
manifold ofM andF a vector sub-bundle ofTSM such that all the conditions of Theorem
3.1 are verified, and denote by(Ŝ, Λ̂, N̂) the Poisson–Nijenhuis manifold obtained from
(M,Λ,N) by reduction via(S, F ). If the vector fieldT ∈ V1(M) is tangent toS, T |S /∈
Kerλ andλ(T |S) = TS ∈ V1(S) is a projectable vector field with projection̂T ∈ V1(Ŝ),
then(Ŝ, Λ̂, N̂, T̂ ) is a homogeneous Poisson–Nijenhuis manifold.

Proof. We only have to prove thatL
T̂
Λ̂ = −Λ̂ andL

T̂
N̂ = 0.

It is easy to verify that the tensor fieldLTSNS on S is projectable and its projection is
L
T̂
N̂ , i.e.,

L
T̂
N̂ = T π ◦ LTSNS ◦ (T π)−1

h , (19)

3 Obviously, the bracket considered in condition 2 of Theorem 2.1 is the Poisson bracket on(M,Λ).
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whereNS is given by (16). SinceT is tangent toS andN |S(TS) ⊂ TS, (19) can be written
as

L
T̂
N̂ = T π ◦ λ ◦ (LT |SN |S) ◦ λ−1

h ◦ (T π)−1
h . (20)

Taking into account thatLTN = 0, from (20) we obtainL
T̂
N̂ = 0.

On the other hand, for all̂α, β̂ ∈ Ω1(Ŝ),

(LT |SΛ|S)(t(T π ◦ λ)(α̂), t(T π ◦ λ)(β̂)) = −Λ|S(t(T π ◦ λ)(α̂), t(T π ◦ λ)(β̂)).
(21)

The second member of (21) equals−Λ̂(α̂, β̂). Using the facts thatT is tangent toS, the two
1-formstλ(LTS (

tT π(α̂))) andLT |S (t(T π ◦λ)(α̂)) coincide onTS, and(Λ|S)#((TS)0) ⊂ F ,
we conclude that the first member of (21) equals(L

T̂
Λ̂)(α̂, β̂). So,L

T̂
Λ̂ = −Λ̂, because

α̂ andβ̂ are arbitrary. �

4. Jacobi–Nijenhuis manifolds

The initial definition of Jacobi–Nijenhuis manifold was introduced by Marrero et al. [7].
In [13], the authors gave a more strict definition of this concept. In this section, we review
the essential results concerning this structure needed throughout this article.

LetM be aC∞-differentiable manifold andN : V1(M)×C∞(M) → V1(M)×C∞(M),
aC∞(M)-linear map defined, for all(X, f ) ∈ V1(M)× C∞(M), by

N (X, f ) = (NX+ fY, 〈γ,X〉 + gf), (22)

whereN is a tensor field of type(1,1) onM, Y ∈ V1(M), γ ∈ Ω1(M) andg ∈ C∞(M).
N := (N, Y, γ, g) can be considered as a vector bundle map,N : TM × R → TM × R.
Since the spaceV1(M)× C∞(M) endowed with the bracket

[(X, f ), (Z, h)] = ([X,Z], X · h− Z · f ), (23)

((X, f ), (Z, h)) ∈ (V1(M) × C∞(M,R))2, is a real Lie algebra, we may define the
Nijenhuis torsionT (N ) ofN . It is aC∞(M)-bilinear mapT (N ) : (V1(M)×C∞(M))2 →
V1(M)× C∞(M) given by

T (N )((X, f ), (Z, h))= [N (X, f ),N (Z, h)] −N [N (X, f ), (Z, h)]

−N [(X, f ),N (Z, h)] +N 2[(X, f ), (Z, h)], (24)

((X, f ), (Z, h)) ∈ (V1(M)× C∞(M))2.

Definition 4.1. A C∞(M)-linear mapN : V1(M) × C∞(M) → V1(M) × C∞(M) is a
Nijenhuis operator onM, if it has a vanishing Nijenhuis torsion.

Suppose now thatM is equipped with a Jacobi structure(Λ0, E0)and a Nijenhuis operator
N . Then, we may define a tensor fieldΛ1 of type(2,0)and a vector fieldE1 onM, by setting

(Λ1, E1)
# = N ◦ (Λ0, E0)

#. (25)
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Recall that two Jacobi structures(Λ0, E0) and(Λ1, E1), defined on the same differen-
tiable manifold, are said to becompatibleif their sum(Λ0 +Λ1, E0 +E1) is again a Jacobi
structure (cf. [12]).

If one looks for the conditions that assure the pair(Λ1, E1), given by (25), defines a new
Jacobi structure onM, compatible with(Λ0, E0), one finds (cf. [7]):

1. Λ1 is skew-symmetric if and only ifN ◦ (Λ0, E0)
# = (Λ0, E0)

# ◦ tN , wheretN is
the transpose ofN . This condition is equivalent toNE0 = Λ#

0(γ ) + gE0, NΛ#
0 − Y ⊗

E0 = Λ#
0

tN + E0 ⊗ Y and〈γ,E0〉 = 0. Then,

Λ#
1 = NΛ#

0 − Y ⊗ E0 = Λ#
0

tN + E0 ⊗ Y (26)

and

E1 = NE0 = Λ#
0(γ )+ gE0. (27)

2. WhenΛ1 is skew-symmetric,(Λ1, E1) defines a Jacobi structure onM if and only if,
for all (α, f ), (β, h) ∈ Ω1(M)× C∞(M),

T (N )((Λ0, E0)
#(α, f ), (Λ0, E0)

#(β, h))

= N ◦ (Λ0, E0)
#(C((Λ0, E0),N )((α, f ), (β, h))),

whereC((Λ0, E0),N ) is theconcomitantof (Λ0, E0) andN which is given, for all
(α, f ), (β, h) ∈ Ω1(M)× C∞(M), by

C((Λ0, E0),N )((α, f ), (β, h))

= {(α, f ), (β, h)}1 − {tN (α, f ), (β, h)}0

− {(α, f ), tN (β, h)}0 + tN {(α, f ), (β, h)}0,

({, }i is the bracket (6) associated with the Jacobi structure(Λi, Ei), i = 0,1).
3. In the case where(Λ1, E1) is a Jacobi structure, it is compatible with(Λ0, E0) if and

only if, for all (α, f ), (β, h) ∈ Ω1(M)× C∞(M),

(Λ0, E0)
#(C((Λ0, E0),N )((α, f ), (β, h))) = 0.

Definition 4.2. A Jacobi–Nijenhuis manifold(M, (Λ0, E0),N ) is a Jacobi manifold
(M,Λ0, E0) with a Nijenhuis operatorN which is compatible with(Λ0, E0), i.e.: (i)
N ◦(Λ0, E0)

# = (Λ0, E0)
#◦ tN and (ii) the map(Λ0, E0)

#◦C((Λ0, E0),N ) : (Ω1(M)×
C∞(M))2 → V1(M) × C∞(M) identically vanishes onM. N is called the recursion
operator of(M, (Λ0, E0),N ).

Theorem 4.3(Marrero et al. [7]).Let ((Λ0, E0),N ) be a Jacobi–Nijenhuis structure on
a differentiable manifoldM. Then, there exists a hierarchy((Λk,Ek), k ∈ N) of Jacobi
structures onM, which are pairwise compatible. For allk ∈ N, (Λk,Ek) is the Jacobi
structure associated with the vector bundle map(Λk,Ek)

# given by(Λk,Ek)
# = N k ◦

(Λ0, E0)
#. Moreover, for allk, l ∈ N, the pair((Λk,Ek),N l ) defines a Jacobi–Nijenhuis

structure onM.
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Next proposition shows a relation between Jacobi–Nijenhuis manifolds and homo-
geneous Poisson–Nijenhuis structures.

Proposition 4.4 (Petalidou and Nunes da Costa [13]).With each Jacobi–Nijenhuis man-
ifold (M, (Λ,E),N ), N := (N, Y, γ, g), a homogeneous Poisson–Nijenhuis manifold
(M̃, Λ̃, Ñ, T̃ ) can be associated, where(M̃, Λ̃, T̃ ) is the Poissonization of(M,Λ,E) and
Ñ is the Nijenhuis tensor field oñM given by

Ñ = N + Y ⊗ dt + ∂

∂t
⊗ γ + g

∂

∂t
⊗ dt. (28)

Finally, we recall the notion of conformal equivalence of Jacobi–Nijenhuis structures on
a differentiable manifoldM.

Proposition 4.5 (Petalidou and Nunes da Costa [13]).Let ((Λ0, E0),N ) be a Jacobi–
Nijenhuis structure onM, (Λ1, E1) the Jacobi structure associated with(Λ1, E1)

# =
N ◦ (Λ0, E0)

#, a ∈ C∞(M) a function which vanishes nowhere, and(Λa
0, E

a
0) (resp.

(Λa
1, E

a
1)) the Jacobi structurea-conformal to(Λ0, E0) (resp. (Λ1, E1)). Then, there exists

a Nijenhuis operatorN a := (Na, Y a, γ a, ga) such that(Λa
1, E

a
1)

# = N a ◦ (Λa
0, E

a
0)

#,
with

Na = N − Y ⊗ da

a
, Y a = Y, (29)

γ a = γ + tN
da

a
−

(
g + 1

a
LY a

)
da

a
, ga = g + 1

a
LY a. (30)

The Jacobi–Nijenhuis structure((Λa
0, E

a
0),N

a) is said to be a-conformal to((Λ0, E0),N ).

5. Reduction of Jacobi–Nijenhuis manifolds

In this section, we present the main result of this paper: a reduction theorem for Jacobi–
Nijenhuis manifolds. We also study the reduction of conformally equivalent Jacobi–
Nijenhuis structures and the relation between the Jacobi–Nijenhuis and homogeneous
Poisson–Nijenhuis reduction.

Theorem 5.1. Let (M, (Λ,E),N ), N := (N, Y, γ, g), be a Jacobi–Nijenhuis manifold,
S a submanifold ofM, i : S ↪→ M the canonical injection, andF a vector sub-bundle of
TSM, which satisfy the conditions 1 and 2 of Theorem2.1and also

1. (Λ|S)#(F 0) ⊂ TS andE|S is a section of TS;
2. N |S(TS) ⊂ TS, N |S(F ) ⊂ F andNS , given by(16),sends projectable vector fields to

projectable vector fields;
3. Y is tangent toS andYS = λ(Y |S) ∈ V1(S) is a projectable vector field, whereλ :

TSM → TS is a (projection) vector bundle map such that its restriction to TS is the
identity map andF ⊂ Kerλ;
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4. γ |S is a section of(TS∩ F)0 and, for all sectionsZ of TS∩ F , iZd(t(Ti)(γ |S)) = 0;
5. g|S is constant on the leaves ofS.

Under these conditions, there exists onŜ a Jacobi–Nijenhuis structure((Λ̂, Ê), N̂ ), N̂ :=
(N̂, Ŷ , γ̂ , ĝ), where(Λ̂, Ê) is given by(12) and (13),N̂ is given by(17),Ŷ = T π ◦λ◦Y |S ,
γ̂ ∈ Ω1(Ŝ) is such thattT π(γ̂ ) = t(Ti)(γ |S), and ĝ ∈ C∞(Ŝ) is given byĝ ◦ π =
g|S . The Jacobi–Nijenhuis manifold(Ŝ, (Λ̂, Ê), N̂ ) is said to have been obtained from
(M, (Λ,E),N ) by reduction via(S, F ).

Proof. Since all the conditions of Theorem 2.1 hold,Ŝ is endowed with a (reduced) Jacobi
structure(Λ̂, Ê), given by (12) and (13). It remains to show that the Nijenhuis operator
N := (N, Y, γ, g) also reduces to a Nijenhuis operatorN̂ on Ŝ compatible with(Λ̂, Ê).

As in the case of Theorem 3.1, condition 2 guarantees the existence of a tensor fieldN̂ of
type(1,1) on Ŝ, given by (17). From condition 3, the vector fieldYS = λ(Y |S) ∈ V1(S) is
projectable and we denote bŷY ∈ V1(Ŝ) its projection. Also, by hypothesis 4, the 1-form
γS = t(Ti)(γ |S) on S is projectable and we denote byγ̂ ∈ Ω1(Ŝ) its projection. Finally,
from condition 5, there exists a functionĝ ∈ C∞(Ŝ) such that̂g◦π = g|S . Thus, we obtain a
C∞(Ŝ)-linear map,N̂ : V1(Ŝ)×C∞(Ŝ) → V1(Ŝ)×C∞(Ŝ),N̂ := (N̂, Ŷ , γ̂ , ĝ), defined as
in (22). Using the properties of the restrictionN |S := (N |S, Y |S, γ |S, g|S) ofN to the sub-
manifoldS, a straightforward calculation shows thatN̂ has a vanishing Nijenhuis torsion.

In order to conclude that((Λ̂, Ê), N̂ ) defines a Jacobi–Nijenhuis structure onŜ, we have
to prove thatN̂ ◦ (Λ̂, Ê)# = (Λ̂, Ê)# ◦ tN̂ and that(Λ̂, Ê)# ◦ C((Λ̂, Ê), N̂ ) = 0. Let
α̂ ∈ Ω1(Ŝ), f̂ ∈ C∞(Ŝ), and considert(T π ◦ λ)(α̂), which is a section ofT ∗

S M, and

f ∈ C∞(M) an extension off̂ ◦ π , i.e.,f |S = f̂ ◦ π . Then,

N |S((Λ|S, E|S)#(t(T π ◦ λ)(α̂), f |S)) = (Λ|S, E|S)#(tN |S(t(T π ◦ λ)(α̂), f |S)).
(31)

Since(Λ|S)#(t(T π ◦ λ)(α̂)) is a section of(Λ|S)#(F 0) ⊂ TSandE|S is a section ofTS,
the image by(T π ◦ λ) of the term vector field of the first member of (31) is equal to

N̂(Λ̂#(α̂))+ f̂ N̂(Ê)− 〈α̂, Ê〉Ŷ . (32)

Becausetλ(tNS(
tT π(α̂))) − tN |S(t(T π ◦ λ)(α̂)) is a section of(TS)0 and(Λ|S)#((TS)0)

⊂ F , we get

T π ◦ λ((Λ|S)#(tN |S(t(T π ◦ λ)(α̂)))) = Λ̂#(tN̂(α̂)),

and we may conclude that the image by(T π ◦ λ) of the term vector field of the second
member of (31) is equal to

Λ̂#(tN̂(α̂))+ f̂ Λ̂#(γ̂ )+ 〈α̂, Ŷ 〉Ê + f̂ ĝÊ. (33)

From (32) and (33), we obtain

N̂(Λ̂#(α̂))+ f̂ N̂(Ê)− 〈α̂, Ê〉Ŷ = Λ̂#(tN̂(α̂))+ f̂ Λ̂#(γ̂ )+ 〈α̂, Ŷ 〉Ê + f̂ ĝÊ,

which means that the term vector field ofN̂ ◦ (Λ̂, Ê)#(α̂, f̂ ) coincides with the term vector
field of (Λ̂, Ê)# ◦ tN̂ (α̂, f̂ ). In a similar way, one can prove that the term function of
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N̂ ◦ (Λ̂, Ê)#(α̂, f̂ ) is equal to the term function of(Λ̂, Ê)# ◦ tN̂ (α̂, f̂ ). Sinceα̂ ∈ Ω1(Ŝ)

and f̂ ∈ C∞(Ŝ) are arbitrary, we obtainN̂ ◦ (Λ̂, Ê)# = (Λ̂, Ê)# ◦ tN̂ . Applying the
same kind of technical arguments as before, we can deduce, after a hard computation, that
(Λ̂, Ê)# ◦ C((Λ̂, Ê), N̂ ) = 0. �

Remark 5.2. Under the assumptions of Theorem 5.1, if(M, (Λ,E),N ) is a Jacobi–
Nijenhuis manifold which is reducible via(S, F ) to (Ŝ, (Λ̂0, Ê0), N̂ ), then, each member
(Λ̂k, Êk) of the hierarchy((Λ̂k, Êk), k ∈ N) of Jacobi structures on̂S, given by Theorem
4.3, is obtained by reduction via(S, F ), from the corresponding member(Λk,Ek) of the
hierarchy((Λk,Ek), k ∈ N) of Jacobi structures onM.

Next proposition establishes a relation between reduction and conformal equivalence of
Jacobi–Nijenhuis structures.

Proposition 5.3. Let (M, (Λ,E),N ), N := (N, Y, γ, g), be a Jacobi–Nijenhuis mani-
fold, S a submanifold ofM andF a vector sub-bundle ofTSM which satisfy the conditions
of Theorem2.1, and (Ŝ, (Λ̂, Ê), N̂ ), N̂ := (N̂, Ŷ , γ̂ , ĝ), the Jacobi–Nijenhuis manifold
obtained from(M, (Λ,E),N ) by reduction via(S, F ). Let a ∈ C∞(M) be a function
which vanishes nowhere and such thatda is a section ofF 0,and((Λa,Ea),N a) the Jacobi–
Nijenhuis structure onM, a-conformal to ((Λ,E),N ). Then (M, (Λa,Ea),N a) is
reducible via (S, F ) and the reduced structure on̂S is conformally equivalent to
((Λ̂, Ê), N̂ ).

Proof. Since da is a section ofF 0, it is easy to check that if the Jacobi structure(Λ,E)

onM is reducible via(S, F ), then thea-conformal Jacobi structure(Λa,Ea) onM is also
reducible via(S, F ). Furthermore, condition 1 of Theorem 5.1 holds. So,Ŝ is equipped
with two (reduced) Jacobi structures(Λ̂, Ê) and(Λ̂a, Êa) that are compatible (cf. [12]).
But Λ̂a = Λ̂â andÊa = Êâ , whereâ ∈ C∞(Ŝ) is given byâ ◦ π = a|S ; i.e., the Jacobi
structures(Λ̂, Ê) and(Λ̂a, Êa) on Ŝ are conformally equivalent.

It remains to check thatN a := (Na, Y a, γ a, ga) verifies the conditions 2–5 of Theorem
5.1. BecauseY is tangent toS and da vanishes onF ,Na|S(TS) ⊂ TSandNa|S(F ) ⊂ F . Let
X ∈ V1(S)be a projectable vector field. Then, we have thatNa

S (X) = NS(X)−〈da/a,X〉YS
and, for any sectionZ of TS∩ F ,

LZ(N
a
S (X)) = LZ(NS(X))−

〈
da

a
,X

〉
LZYS

is also a section ofTS∩ F . So,Na
S (X) ∈ V1(S) and it is a projectable vector field. Also,

LZg
a = LZg +

(
LZ

1

a

)
LYa + 1

a
LZ(LY a) = 0,

for all sectionsZ of TS∩ F , which implies thatga is constant on the leaves ofS. Finally,
for the restrictionγ a|S of γ a ∈ Ω1(M) to the submanifoldS, sincetN |S(F 0) ⊂ F 0, we
obtain thatγ a|S is a section of(TS∩ F)0 and thatiZ d(tTi(γ a|S)) = 0, for all sectionsZ
of TS∩ F . From the definitions ofN a andN̂ , it follows thatN̂ a = N̂ â . �
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Examples 5.4.

1. Let M be a five-dimensionalC∞-differentiable manifold equipped with a Jacobi–
Nijenhuis structure((Λ,E),N ),N := (N, Y, γ, g), which is given, in local coordinates
(x0, x1, x2, x3, x4), by

Λ= 3

2

∂

∂x0
∧

(
x1

∂

∂x1
+ x3

∂

∂x3

)
+ ∂

∂x1
∧ ∂

∂x2
+ ∂

∂x3
∧ ∂

∂x4
, E = 3

2

∂

∂x0
,

N =
(

−x4
∂

∂x0
+ ∂

∂x2
+ ∂

∂x3

)
⊗ dx0

−
((

x4 + 3

2
x1

)
∂

∂x1
+ 3

2
(x3 − x2)

∂

∂x3

)
⊗ dx1

+
(

−x4
∂

∂x2
+ 5

2
x1

∂

∂x3

)
⊗ dx2 − x4

∂

∂x3
⊗ dx3

+
(

1

2
x0

∂

∂x0
− x1

∂

∂x1
+ 3

2
x2

∂

∂x2
+ 3

2
x3

∂

∂x3
− x4

∂

∂x4

)
⊗ dx4,

Y = −3

2
x2

1
∂

∂x1
+

(
1

3
x0 + 3

2
x1(x2 − x3)

)
∂

∂x3
,

γ = 3

2
(dx1 − dx4), g = 3

2
x1 − x4.

If F denotes the vector sub-bundle ofTM generated by the vector field(∂/∂x3), it is
easy to check that all the conditions of Theorem 5.1 hold. So,(M, (Λ,E),N ) is reducible
via (M,F ) to a Jacobi–Nijenhuis manifold(M̂, (Λ̂, Ê), N̂ ), N̂ := (N̂, Ŷ , γ̂ , ĝ), where

Λ̂= 3

2
x1

∂

∂x0
∧ ∂

∂x1
+ ∂

∂x1
∧ ∂

∂x2
, Ê = 3

2

∂

∂x0
,

N̂ =
(

−x4
∂

∂x0
+ ∂

∂x2

)
⊗ dx0 −

(
x4 + 3

2
x1

)
∂

∂x1
⊗ dx1 − x4

∂

∂x2
⊗ dx2

+
(

1

2
x0

∂

∂x0
− x1

∂

∂x1
+ 3

2
x2

∂

∂x2
− x4

∂

∂x4

)
⊗ dx4,

Ŷ = −3

2
x2

1
∂

∂x1
, γ̂ = 3

2
(dx1 − dx4), ĝ = 3

2
x1 − x4.

2. Let (M,Λ,N) be a Poisson–Nijenhuis manifold which is reducible via(S, F ) to a
Poisson–Nijenhuis manifold(Ŝ, Λ̂, N̂) in the sense of Theorem 3.1, and leta ∈ C∞(M)

be a function that never vanishes. Then,(M, (aΛ,Λ#(da)),N ), N := (N,0, tN(da/
a),0), is a Jacobi–Nijenhuis manifold. Moreover, ifa ∈ C∞(M) is in the conditions of
Proposition 5.3, from the Poisson–Nijenhuis reduction assumptions onΛ andN , one
can deduce that(M, (aΛ,Λ#(da)),N ) is reducible via(S, F ) to the Jacobi–Nijenhuis
manifold(Ŝ, (âΛ̂, Λ̂#(dâ)), N̂ ), N̂ := (N̂,0, tN̂(dâ/â),0), whereâ ∈ C∞(Ŝ) is given
by â ◦ π = a|S .

Now we are going to present the relationship between the reduction of a Jacobi–
Nijenhuis manifold and the reduction of the corresponding homogeneous Poisson–
Nijenhuis manifold, in the sense of Proposition 4.4.
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Let (M, (Λ,E),N ) be a Jacobi–Nijenhuis manifold,S a submanifold ofM, F a
vector sub-bundle ofTSM, and(M̃, Λ̃, Ñ, T̃ ) the corresponding homogeneous Poisson–
Nijenhuis manifold, in the sense of Proposition 4.4. Consider the submanifoldS̃ = S×R

of M̃ = M × R and the vector sub-bundlẽF of T
S̃
M̃ given byF̃ = F × {0}. Then,

T S̃ ∩ F̃ = (TS∩ F) × {0}. We denote bỹi : S̃ ↪→ M̃ the canonical injection and by
λ̃ : T

S̃
M̃ → T S̃ a (projection) vector bundle map such that its restriction toT S̃ is the

identity map andF̃ ⊂ Ker λ̃. We should point out that the vector field̃T = ∂/∂t is
tangent toS̃, T̃ |

S̃
/∈ Ker λ̃ andλ̃(T̃ |

S̃
) ∈ V1(S̃) is a projectable vector field. Under these

assumptions, we can state the following result.

Proposition 5.5. If the homogeneous Poisson–Nijenhuis manifold(M̃, Λ̃, Ñ, T̃ ) is

reduced via(S̃, F̃ ) to a homogeneous Poisson–Nijenhuis manifold(
ˆ̃
S,

ˆ̃
Λ,

ˆ̃
N,

ˆ̃
T ), then the

Jacobi–Nijenhuis manifold(M, (Λ,E),N ) is reducible via(S, F ) to a Jacobi–Nijenhuis
manifold(Ŝ, (Λ̂, Ê), N̂ ).

Moreover, (
ˆ̃
S,

ˆ̃
Λ,

ˆ̃
N,

ˆ̃
T ) is the homogeneous Poisson–Nijenhuis manifold that

corresponds to(Ŝ, (Λ̂, Ê), N̂ ) in the sense of Proposition4.4.

The following lemma is useful in the proof of Proposition 5.5.

Lemma 5.6. A vector fieldX̃ ∈ V1(S̃) is projectable byπ̃ : S̃ → ˆ̃
S if and only if

X̃ = X + f̃ (∂/∂t), whereX ∈ V1(S) is projectable byπ : S → Ŝ and f̃ ∈ C∞(S̃)

is such thatLZf̃ = 0, for all sectionsZ of TS∩ F .

Proof. Taking into account that a vector field̃X ∈ V1(S̃) can be written as̃X = X +
f̃ (∂/∂t), with X ∈ V1(S) andf̃ ∈ C∞(S̃), and that a section ofT S̃ ∩ F̃ can be identified
with a section ofTS∩ F , the conclusion follows readily. �

Proof (of Proposition 5.5). It is known (cf. [10]) that if the Poisson manifold( ˆ̃S, ˆ̃
Λ) is

obtained from(M̃, Λ̃) by reduction via(S̃, F̃ ), then the Jacobi manifold(Ŝ, Λ̂, Ê) is
obtained from(M,Λ,E) by reduction via(S, F ) and, as a consequence ofT S̃ ∩ F̃ =
(TS∩ F) × {0}, ˆ̃

S = Ŝ × R. Moreover, sinceF̃ 0 = F 0 × T ∗R, (Λ̃|
S̃
)#(F̃ 0) ⊂ T S̃ im-

plies (Λ|S)#(F 0) ⊂ TSand thatE|S is a section ofTS. From Ñ |
S̃
(F̃ ) ⊂ F̃ , we obtain

N |S(F ) ⊂ F and also thatγ |S is a section of(TS∩F)0, and fromÑ |
S̃
(T S̃) ⊂ T S̃, we get

N |S(TS) ⊂ TSand we may conclude thatY is tangent toS. LetX ∈ V1(S) be a projectable
vector field. Using the fact that̃X = X + ∂/∂t ∈ V1(S̃) is a projectable vector field and
henceÑ

S̃
(X̃) = NS(X)+ YS + (〈γS,X〉 + gS)∂/∂t is also a projectable vector field, from

Lemma 5.6 we conclude thatNS(X) andYS are projectable vector fields onS. In addition,
Ñ
S̃
(X) = NS(X) + 〈t(Ti)(γ |S),X〉(∂/∂t) ∈ V1(S̃) is also a projectable vector field and

from Lemma 5.6, for all sectionsZ of TS∩ F ,

LZ〈t(Ti)(γ |S),X〉 = 0. (34)

Since (34) holds for all projectable vector fieldsX onS, and taking into account that, for any
x ∈ S, the projectable vector fields form a basis ofTxS, we deduce thatiZ d(tTi(γ |S)) = 0,
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for all sectionsZ of TS∩ F . Finally, becausẽN
S̃
(∂/∂t) = YS + g|S(∂/∂t) is a projectable

vector field onS̃, from Lemma 5.6 we have thatLZg|S = 0 for all sectionsZ of TS∩ F .
Thus, we conclude that the Jacobi–Nijenhuis manifold(Ŝ, (Λ̂, Ê), N̂ ) is obtained from
(M, (Λ,E),N ) by reduction via(S, F ).

The last part of the proposition is a consequence of the fact thatT π̃ = (T π, idTR) and
λ̃ = (λ, idTR). �

6. Reduction under Lie group actions

Let φ be a left action of a Lie groupG on a Jacobi manifold(M,Λ,E). φ is said to be
a Jacobi actionif, for all h ∈ G, the mapφh : M → M, φh(x) = φ(h, x), is a Jacobi
diffeomorphism. The actionφ is proper if the spaceM̂ of the orbits has the structure of a
differentiable manifold for which the canonical projectionπ : M → M̂ is a submersion.

LetG denote the Lie algebra ofG. For anyX ∈ G, letXM ∈ V1(M) be the fundamental
vector field corresponding toX,

XM(x) = d

dt
(φ(exp(−tX), x))|t=0, x ∈ M.

If the Lie groupG is connected, thenφ is a Jacobi action if and only if [XM,Λ] = 0 and
[XM,E] = 0, for allX ∈ G.

Proposition 6.1. Let(M, (Λ,E),N ),N := (N, Y, γ, g),be a Jacobi–Nijenhuis manifold,
G a connected Lie group that acts onM with a proper Jacobi actionφ andF the vector
sub-bundle of TM tangent to the orbits ofφ. If for all X ∈ G, LXM

N = 0, LXM
Y = 0,

LXM
γ = 0, iXM

γ = 0, LXM
g = 0, andN(XM) = (ξ(X))M , whereξ : G → G is

an endomorphism, then, the spaceM̂ of the orbits ofφ is endowed with a structure of a
Jacobi–Nijenhuis manifold obtained from(M, (Λ,E),N ) by reduction via(M,F ).

Proof. A straightforward calculation leads to the conclusion that all the conditions of
Theorem 5.1 hold. �

Let us now suppose that the Jacobi actionφ of the connected Lie groupG on the
Jacobi–Nijenhuis manifold(M, (Λ,E),N ) admits a momentum mapJ ; i.e., a map
J : M → G∗, whereG∗ is the dual space of the Lie algebraG of G, such that for all
X ∈ G, XM = Λ#(d〈J,X〉) + 〈J,X〉E, where〈J,X〉 ∈ C∞(M) is given by〈J,X〉(x) =
〈J (x),X〉, for anyx ∈ M. In addition, we suppose thatJ is Ad∗-equivariant, i.e.,J ◦ φh =
Ad∗

h ◦ J , for all h ∈ G, whereAd∗ is the coadjoint action ofG onG∗.
Let µ ∈ G∗ be a weakly regular value ofJ . Then,S = J−1(µ) is a submanifold ofM

andTxJ−1(µ) = Ker(TxJ ), for all x ∈ J−1(µ). Denote byF the vector sub-bundle of
TSM given by

F = {XM − 〈µ,X〉E, X ∈ G}. (35)

ThenF ∩ T (J−1(µ)) = {XM − 〈µ,X〉E, X ∈ Gµ}, whereGµ is the Lie algebra of
the isotropy groupGµ. In [11], we proved thatF ∩ T (J−1(µ)) is a completely integrable
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vector sub-bundle ofT (J−1(µ)) and, if it has constant rank and defines a simple foliation of

J−1(µ), then(Ĵ−1(µ), Λ̂, Ê) is a Jacobi manifold obtained from(M,Λ,E) by reduction
via (J−1(µ), F ). In this reduction procedure, one verifies that(Λ|S)#(F 0) ⊂ TSandE|S
is a section ofTS.

Keeping the notations of the previous sections, we may establish the following result for
Jacobi–Nijenhuis structures.

Proposition 6.2. Let(M, (Λ,E),N ),N := (N, Y, γ, g), be a Jacobi–Nijenhuis manifold
such that the vector fieldE is complete. LetG be a connected Lie group which acts onM
with a left Jacobi action that admits an Ad∗-equivariant momentum mapJ . Letµ ∈ G∗ be
a weakly regular value ofJ , S = J−1(µ), andF the vector sub-bundle ofTSM given by
(35). Suppose that TS∩ F has constant rank and defines a simple foliation ofS and that
the following conditions hold:

1. TSJ ◦N |S = TSJ ;
2. ∀X ∈ G, N |S(XM − 〈µ,X〉E) = (ξ(X))M − 〈µ, ξ(X)〉E, whereξ : G → G is an

endomorphism;
3. ∀X ∈ Gµ, LXM

NS = 0 andLENS = 0;
4. Y is tangent toS = J−1(µ), LEY = 0, andLXM

Y = 0, for all X ∈ Gµ;
5. iE(dγS) = 0 and, for allX ∈ Gµ, LXM

γS = 0 andiXM
(dγS) = 0;

6. g|S is a first integral ofE and ofXM , for all X ∈ Gµ.

Under these conditions, (Ĵ−1(µ), (Λ̂, Ê), N̂ ) is a Jacobi–Nijenhuis manifold obtained
from (M, (Λ,E),N ) by reduction via(J−1(µ), F ).

Proof. An easy computation shows that the condition 2 of Theorem 5.1 follows from
hypotheses 1–3. On the other hand, from 4–6 of Proposition 6.2, conditions 3–5 of Theorem
5.1 also hold. Taking into account the previous comments, the proof is concluded.�

As observed in [11], the vector sub-bundleT (J−1(µ))∩ F of T (J−1(µ)) is the tangent
bundle to the orbits of the restriction toGµ × J−1(µ) of the actionφ′ of Gµ onM defined,
for all x ∈ M andX ∈ Gµ, by φ′(exp(tX), x) = φ(exp(tX), ρt〈µ,X〉(x)), where(ρt )t∈R is
the flow of the vector fieldE. Thus, the Jacobi–Nijenhuis structure((Λ̂, Ê), N̂ ) obtained
in Proposition 6.2 is in fact defined on the spaceJ−1(µ)/Gµ of the orbits of the actionφ′
of Gµ onJ−1(µ).
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