Reduction of Jacobi-Nijenhuis manifolds

J.M. Nunes da Costa ${ }^{*, 1}$, Fani Petalidou ${ }^{2}$
Departamento de Matemática, Universidade de Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal

Received 26 February 2001 ; received in revised form 14 May 2001

Abstract

A reduction theorem for Jacobi-Nijenhuis manifolds is established and its relation with the reduction of homogeneous Poisson-Nijenhuis structures is shown. Reduction under Lie group actions is also studied. © 2002 Elsevier Science B.V. All rights reserved.

MSC: 53D05; 53D10; 53D17

Subj. Class.: Differential geometry
Keywords: Jacobi-Nijenhuis manifold; Homogeneous Poisson-Nijenhuis manifold; Reduction

1. Introduction

The notion of Jacobi-Nijenhuis structure was introduced by Marrero et al. [7]. Recently, the authors gave, in [13], a more strict definition of that structure which generalises, in a natural way, the notion of Poisson-Nijenhuis manifold introduced by Magri and Morosi [3,6] for better understanding the completely integrable hamiltonian systems.

In this paper, we intend to study the reduction of Jacobi-Nijenhuis structures. Mainly, we define a foliation on a submanifold of a Jacobi-Nijenhuis manifold in such a way that the manifold of the leaves is also endowed with a Jacobi-Nijenhuis structure. Since a Jacobi-Nijenhuis manifold carries a Jacobi structure and, on the other hand, there is a close relation between Jacobi-Nijenhuis manifolds and homogeneous Poisson-Nijenhuis manifolds, we were inspired in some technical arguments used in the reduction methods of both Jacobi [9,10] and Poisson-Nijenhuis manifolds [14], in order to achieve our goal.

[^0]This paper is organised as follows. In Section 2, we review some basic facts about Jacobi manifolds, including the reduction method. In Section 3, we give a reduction theorem for homogeneous Poisson-Nijenhuis manifolds, which is adapted from the Poisson-Nijenhuis reduction theorem of Vaisman [14]. Section 4 is devoted to Jacobi-Nijenhuis manifolds. We recall the essential definitions and the notions of associated homogeneous Poisson-Nijenhuis manifold and conformal equivalence. In Section 5, we establish a reduction theorem for Jacobi-Nijenhuis manifolds, we study the reduction of conformally equivalent JacobiNijenhuis structures and we show how the homogeneous Poisson-Nijenhuis reduction is related with the Jacobi-Nijenhuis reduction. Section 6 concerns the reduction of JacobiNijenhuis structures under Lie group actions. The two cases presented are examples of the reduction theorem of previous section. In the first case, we obtain a Jacobi-Nijenhuis structure on the space of the orbits of a Lie group action. In the second, the action has a momentum map and the Jacobi-Nijenhuis structure is defined on a quotient of a level set of that momentum map.

Notation: In the following, we will denote by M a C^{∞}-differentiable manifold of finite dimension, by $C^{\infty}(M)$ the algebra of C^{∞} real-valued functions on M, by $\Omega^{k}(M), k \in \mathbb{N}$, the space of k-forms on M, and by $\mathcal{V}^{k}(M), k \in \mathbb{N}$, the space of skew-symmetric contravariant k-tensors on M.

2. Jacobi manifolds

We consider the manifold M endowed with a 2-tensor Λ and a vector field E. The following bracket on $C^{\infty}(M)$,

$$
\begin{equation*}
\{f, g\}=\Lambda(\mathrm{d} f, \mathrm{~d} g)+\langle f \mathrm{~d} g-g \mathrm{~d} f, E\rangle, \quad f, g \in C^{\infty}(M), \tag{1}
\end{equation*}
$$

is bilinear and skew-symmetric, and satisfies the Jacobi identity if and only if

$$
\begin{equation*}
[\Lambda, \Lambda]=-2 E \wedge \Lambda \quad \text { and } \quad[E, \Lambda]=0 \tag{2}
\end{equation*}
$$

where [,] denotes the Schouten bracket [4]. When conditions (2) are verified, the pair (Λ, E) defines a Jacobi structure on M and (M, Λ, E) is called a Jacobi manifold. The bracket (1) is the Jacobi bracket and $\left(C^{\infty}(M),\{\},\right)$ is a local Lie algebra in the sense of Kirillov (cf. [2]). If the vector field E identically vanishes on M, conditions (2) reduce to $[\Lambda, \Lambda]=0$, and M is endowed with a Poisson structure.

We denote by $\Lambda^{\#}: T^{*} M \rightarrow T M$ and $(\Lambda, E)^{\#}: T^{*} M \times \mathbb{R} \rightarrow T M \times \mathbb{R}$ the vector bundle maps associated with Λ and (Λ, E), respectively; i.e., for all α, β sections of $T^{*} M$ and $f \in C^{\infty}(M)$,

$$
\begin{equation*}
\left\langle\beta, \Lambda^{\#}(\alpha)\right\rangle=\Lambda(\alpha, \beta) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
(\Lambda, E)^{\#}(\alpha, f)=\left(\Lambda^{\#}(\alpha)+f E,-\langle\alpha, E\rangle\right) \tag{4}
\end{equation*}
$$

These vector bundle maps can be considered as homomorphisms of $C^{\infty}(M)$-modules, $\Lambda^{\#}$: $\Omega^{1}(M) \rightarrow \mathcal{V}^{1}(M)$ and $(\Lambda, E)^{\#}: \Omega^{1}(M) \times C^{\infty}(M) \rightarrow \mathcal{V}^{1}(M) \times C^{\infty}(M)$, respectively.

For any $f \in C^{\infty}(M)$, the vector field on M

$$
\begin{equation*}
X_{f}=\Lambda^{\#}(\mathrm{~d} f)+f E \tag{5}
\end{equation*}
$$

is called the hamiltonian vector field associated with f.
The space $\Omega^{1}(M) \times C^{\infty}(M)$ possesses a Lie algebra structure whose bracket $\{$,$\} is$ defined as follows (cf. [1]): for all $(\alpha, f),(\beta, g) \in \Omega^{1}(M) \times C^{\infty}(M)$,

$$
\begin{equation*}
\{(\alpha, f),(\beta, g)\}:=(\gamma, h) \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
\gamma & :=L_{\Lambda^{\#}(\alpha)} \beta-L_{\Lambda^{\#}(\beta)} \alpha-\mathrm{d}(\Lambda(\alpha, \beta))+f L_{E} \beta-g L_{E} \alpha-i_{E}(\alpha \wedge \beta) \\
h & :=-\Lambda(\alpha, \beta)+\Lambda(\alpha, \mathrm{d} g)-\Lambda(\beta, \mathrm{d} f)+\langle f \mathrm{~d} g-g \mathrm{~d} f, E\rangle
\end{aligned}
$$

(L is the Lie derivative operator).
Let $a \in C^{\infty}(M)$ be a function which vanishes nowhere on M. For all $f, g \in C^{\infty}(M)$, we may define

$$
\begin{equation*}
\{f, g\}^{a}:=\frac{1}{a}\{a f, a g\} \tag{7}
\end{equation*}
$$

This new bracket $\{,\}^{a}$ on $C^{\infty}(M)$ defines another Jacobi structure $\left(\Lambda^{a}, E^{a}\right)$ on M, which is said to be a-conformal to the initially given one. The two Jacobi structures (Λ, E) and (Λ^{a}, E^{a}) are said to be conformally equivalent and

$$
\begin{equation*}
\Lambda^{a}=a \Lambda, \quad E^{a}=\Lambda^{\#}(\mathrm{~d} a)+a E \tag{8}
\end{equation*}
$$

A homogeneous Poisson manifold (M, Λ, T) is a Poisson manifold (M, Λ) with a vector field $T \in \mathcal{V}^{1}(M)$ such that

$$
\begin{equation*}
L_{T} \Lambda=[T, \Lambda]=-\Lambda \tag{9}
\end{equation*}
$$

Homogeneous Poisson manifolds are closely related to Jacobi manifolds. With each Jacobi manifold (M, Λ, E) we may associate a homogeneous Poisson manifold $(\tilde{M}, \tilde{\Lambda}, \tilde{T})$, with

$$
\begin{equation*}
\tilde{M}=M \times \mathbb{R}, \quad \tilde{\Lambda}=\mathrm{e}^{-t}\left(\Lambda+\frac{\partial}{\partial t} \wedge E\right) \quad \text { and } \quad \tilde{T}=\frac{\partial}{\partial t} \tag{10}
\end{equation*}
$$

where t is the usual coordinate on $\mathbb{R}[5]$. The manifold $(\tilde{M}, \tilde{\Lambda}, \tilde{T})$ is called the Poissonization of (M, Λ, E).

Let us now recall the reduction procedure for Jacobi manifolds.
Theorem 2.1 (Mikami [9] and Nunes da Costa [10]). Let (M, Λ, E) be a Jacobi manifold, S a submanifold of M and F a vector sub-bundle of $T_{S} M$, which satisfy the following conditions:

1. the distribution $T S \cap F$ is completely integrable and the foliation of S defined by this distribution is simple, i.e., all the leaves have the same dimension and the set \hat{S} of leaves has the structure of a differentiable manifold for which the canonical projection $\pi: S \rightarrow \hat{S}$ is a submersion;
2. for any $f, h \in C^{\infty}(M)$ with differentials $\mathrm{d} f$ and $\mathrm{d} h$, restricted to S, vanishing on F, the differential $\mathrm{d}\{f, h\}$, restricted to S, vanishes on F;
3. if $F^{0} \subset T_{S}^{*} M$ denotes the annihilator of F, then $(\Lambda \mid S)^{\#}\left(F^{0}\right) \subset T S+F$, and the restriction of E to S is a differentiable section of $T S+F$.
Then, there exists on \hat{S} a unique Jacobi structure $(\hat{\Lambda}, \hat{E})$ whose associated bracket is given, for any $\hat{f}, \hat{h} \in C^{\infty}(\hat{S})$ and any differentiable extensions f of $\hat{f} \circ \pi$ and h of $\hat{h} \circ \pi$ with differentials $\mathrm{d} f$ and $\mathrm{d} h$, restricted to S, vanish on F, by

$$
\begin{equation*}
\{\hat{f}, \hat{h}\} \circ \pi=\{f, h\} \circ i \tag{11}
\end{equation*}
$$

where i is the canonical injection of S in M.
The Jacobi manifold $(\hat{S}, \hat{\Lambda}, \hat{E})$ is said to have been obtained from (M, Λ, E) by reduction via (S, F).

Let $\lambda: T_{S} M \rightarrow T S$ be a (projection) vector bundle map such that its restriction to $T S$ is the identity map and $F \subset \operatorname{Ker} \lambda$. Then, the Jacobi structures (Λ, E) on M and $(\hat{\Lambda}, \hat{E})$ on \hat{S} are related by the formulae:

$$
\begin{align*}
& \hat{\Lambda}_{\pi(x)}^{\#}=T_{x} \pi \circ \lambda_{x} \circ \Lambda_{i(x)}^{\#} \circ{ }^{\mathrm{t}} \lambda_{x} \circ{ }^{\mathrm{t}} T_{x} \pi, \quad x \in S \tag{12}\\
& \hat{E} \circ \pi=T \pi \circ \lambda \circ E \circ i . \tag{13}
\end{align*}
$$

We remark that the transpose of $\lambda,{ }^{\mathrm{t}} \lambda: T^{*} S \rightarrow T_{S}^{*} M$, is the injection that extends each linear form on S to a linear form on M that vanishes on Ker λ.

3. Reduction of homogeneous Poisson-Nijenhuis manifolds

This section is devoted to Poisson-Nijenhuis and homogeneous Poisson-Nijenhuis manifolds. We give a reduction theorem for homogeneous Poisson-Nijenhuis manifolds.

A Nijenhuis operator on a differentiable manifold M is a tensor field N of type (1,1) which has a vanishing Nijenhuis torsion:

$$
\begin{aligned}
& T(N)(X, Z)=[N X, N Z]-N[N X, Z]-N[X, N Z]+N^{2}[X, Z]=0 \\
& X, Z \in \mathcal{V}^{1}(M)
\end{aligned}
$$

A Poisson-Nijenhuis manifold $\left(M, \Lambda_{0}, N\right)$ is a Poisson manifold $\left(M, \Lambda_{0}\right)$ with a Nijenhuis tensor N which is compatible with Λ_{0}, i.e.: (i) $N \Lambda_{0}^{\#}=\Lambda_{0}^{\# t} N$, where ${ }^{\mathrm{t}} N$ is the transpose of N, and (ii) the map $\Lambda_{0}^{\#} \circ C\left(\Lambda_{0}, N\right): \Omega^{1}(M) \times \Omega^{1}(M) \rightarrow \mathcal{V}^{1}(M)$ identically vanishes on M. $C\left(\Lambda_{0}, N\right)$ is the Magri-Morosi concomitant of Λ_{0} and N [6] defined, for all $(\alpha, \beta) \in \Omega^{1}(M) \times \Omega^{1}(M)$, by

$$
\begin{equation*}
C\left(\Lambda_{0}, N\right)(\alpha, \beta)=\{\alpha, \beta\}_{1}-\left\{{ }^{\mathrm{t}} N \alpha, \beta\right\}_{0}-\left\{\alpha,{ }^{\mathrm{t}} N \beta\right\}_{0}+{ }^{\mathrm{t}} N\{\alpha, \beta\}_{0} \tag{14}
\end{equation*}
$$

where $\{,\}_{i}$ is the bracket associated with $\Lambda_{i}, \Lambda_{i}^{\#}=N^{i} \Lambda_{0}^{\#}, i=0$, 1 , that defines a Lie algebra structure on $\Omega^{1}(M)$ [3]. N is called the recursion operator of $\left(M, \Lambda_{0}, N\right)$.

In what concerns the reduction procedure, remark that, when a Jacobi manifold is Poisson, Theorem 2.1 is the Marsden-Ratiu Poisson reduction theorem [8]. This last one was refined by Vaisman [14] in order to include the Poisson-Nijenhuis case.

Theorem 3.1 (Vaisman [14]). Let (M, Λ, N) be a Poisson-Nijenhuis manifold, S a submanifold of M and F a vector sub-bundle of $T_{S} M$ verifying conditions 1 and 2 of Theorem 2.1. ${ }^{3}$ Moreover, if $\left.N\right|_{S}(T S) \subset T S,\left.N\right|_{S}(F) \subset F,\left.N\right|_{S}$ sends projectable vector fields to projectable vector fields, and $(\Lambda \mid S)^{\#}\left(F^{0}\right) \subset T S$, then there exists on \hat{S} a Poisson-Nijenhuis structure $(\hat{\Lambda}, \hat{N})$, obtained from (Λ, N) by reduction via (S, F).

The Poisson tensor $\hat{\Lambda}$ on \hat{S} is associated with the vector bundle map $\hat{\Lambda}^{\#}$ given by (12) and the tensor \hat{N} of type $(1,1)$ on \hat{S} is given by

$$
\begin{equation*}
\hat{N}=\left.T \pi \circ \lambda \circ N\right|_{S} \circ \lambda_{h}^{-1} \circ(T \pi)_{h}^{-1} \tag{15}
\end{equation*}
$$

where λ_{h} is the restriction of λ to $T S \subset T_{S} M$, which is the identity map, and $(T \pi)_{h}$ is the restriction of $T \pi$ to the horizontal vector sub-bundle of $T S$ with respect to the decomposition $T S \equiv T \hat{S} \oplus(T S \cap F)$.

Let us introduce a tensor field N_{S} of type $(1,1)$ on the submanifold S by setting

$$
\begin{equation*}
N_{S}=\left.\lambda \circ N\right|_{S} \circ \lambda_{h}^{-1} \tag{16}
\end{equation*}
$$

Then (15) can be written as

$$
\begin{equation*}
\hat{N}=T \pi \circ N_{S} \circ(T \pi)_{h}^{-1} \tag{17}
\end{equation*}
$$

Definition 3.2. A homogeneous Poisson-Nijenhuis manifold (M, Λ, N, T) is a PoissonNijenhuis manifold (M, Λ, N) with a vector field $T \in \mathcal{V}^{1}(M)$ such that

$$
\begin{equation*}
L_{T} \Lambda=-\Lambda \quad \text { and } \quad L_{T} N=0 \tag{18}
\end{equation*}
$$

Remark 3.3. Conditions (18) assure that, for all $k \in \mathbb{N}, L_{T} \Lambda_{k}=-\Lambda_{k}$, where Λ_{k} is the Poisson tensor associated with $\Lambda_{k}^{\#}=N^{k} \Lambda$. That is, all the members of the hierarchy $\left(\Lambda_{k}, k \in \mathbb{N}\right)$ are homogeneous Poisson tensors on M with respect to the vector field T.

Theorem 3.1 can easily be adapted to include homogeneous Poisson-Nijenhuis reduction case.

Theorem 3.4. Let (M, Λ, N, T) be a homogeneous Poisson-Nijenhuis manifold, S a submanifold of M and F a vector sub-bundle of $T_{S} M$ such that all the conditions of Theorem 3.1 are verified, and denote by $(\hat{S}, \hat{\Lambda}, \hat{N})$ the Poisson-Nijenhuis manifold obtained from (M, Λ, N) by reduction via (S, F). If the vector field $T \in \mathcal{V}^{1}(M)$ is tangent to $S,\left.T\right|_{S} \notin$ Ker λ and $\lambda\left(\left.T\right|_{S}\right)=T_{S} \in \mathcal{V}^{1}(S)$ is a projectable vector field with projection $\hat{T} \in \mathcal{V}^{1}(\hat{S})$, then $(\hat{S}, \hat{\Lambda}, \hat{N}, \hat{T})$ is a homogeneous Poisson-Nijenhuis manifold.

Proof. We only have to prove that $L_{\hat{T}} \hat{\Lambda}=-\hat{\Lambda}$ and $L_{\hat{T}} \hat{N}=0$.
It is easy to verify that the tensor field $L_{T_{S}} N_{S}$ on S is projectable and its projection is $L_{\hat{T}} \hat{N}$, i.e.,

$$
\begin{equation*}
L_{\hat{T}} \hat{N}=T \pi \circ L_{T_{S}} N_{S} \circ(T \pi)_{h}^{-1} \tag{19}
\end{equation*}
$$

[^1]where N_{S} is given by (16). Since T is tangent to S and $\left.N\right|_{S}(T S) \subset T S$, (19) can be written as
\[

$$
\begin{equation*}
L_{\hat{T}} \hat{N}=T \pi \circ \lambda \circ\left(\left.L_{T \mid S} N\right|_{S}\right) \circ \lambda_{h}^{-1} \circ(T \pi)_{h}^{-1} \tag{20}
\end{equation*}
$$

\]

Taking into account that $L_{T} N=0$, from (20) we obtain $L_{\hat{T}} \hat{N}=0$.
On the other hand, for all $\hat{\alpha}, \hat{\beta} \in \Omega^{1}(\hat{S})$,

$$
\begin{equation*}
\left.\left.\left(\left.L_{T \mid S} \Lambda\right|_{S}\right){ }^{\mathrm{t}}(T \pi \circ \lambda)(\hat{\alpha}),{ }^{\mathrm{t}}(T \pi \circ \lambda)(\hat{\beta})\right)=-\Lambda \mid S{ }^{\mathrm{t}}(T \pi \circ \lambda)(\hat{\alpha}),{ }^{\mathrm{t}}(T \pi \circ \lambda)(\hat{\beta})\right) . \tag{21}
\end{equation*}
$$

The second member of (21) equals $-\hat{\Lambda}(\hat{\alpha}, \hat{\beta})$. Using the facts that T is tangent to S, the two 1 -forms ${ }^{\mathrm{t}} \lambda\left(L_{T_{S}}\left({ }^{\mathrm{t}} T \pi(\hat{\alpha})\right)\right.$) and $L_{T \mid S}\left({ }^{\mathrm{t}}(T \pi \circ \lambda)(\hat{\alpha})\right)$ coincide on $T S$, and $(\Lambda \mid S)^{\#}\left((T S)^{0}\right) \subset F$, we conclude that the first member of (21) equals $\left(L_{\hat{T}} \hat{\Lambda}\right)(\hat{\alpha}, \hat{\beta})$. So, $L_{\hat{T}} \hat{\Lambda}=-\hat{\Lambda}$, because $\hat{\alpha}$ and $\hat{\beta}$ are arbitrary.

4. Jacobi-Nijenhuis manifolds

The initial definition of Jacobi-Nijenhuis manifold was introduced by Marrero et al. [7]. In [13], the authors gave a more strict definition of this concept. In this section, we review the essential results concerning this structure needed throughout this article.

Let M be a C^{∞}-differentiable manifold and $\mathcal{N}: \mathcal{V}^{1}(M) \times C^{\infty}(M) \rightarrow \mathcal{V}^{1}(M) \times C^{\infty}(M)$, a $C^{\infty}(M)$-linear map defined, for all $(X, f) \in \mathcal{V}^{1}(M) \times C^{\infty}(M)$, by

$$
\begin{equation*}
\mathcal{N}(X, f)=(N X+f Y,\langle\gamma, X\rangle+g f) \tag{22}
\end{equation*}
$$

where N is a tensor field of type $(1,1)$ on $M, Y \in \mathcal{V}^{1}(M), \gamma \in \Omega^{1}(M)$ and $g \in C^{\infty}(M)$. $\mathcal{N}:=(N, Y, \gamma, g)$ can be considered as a vector bundle map, $\mathcal{N}: T M \times \mathbb{R} \rightarrow T M \times \mathbb{R}$. Since the space $\mathcal{V}^{1}(M) \times C^{\infty}(M)$ endowed with the bracket

$$
\begin{equation*}
[(X, f),(Z, h)]=([X, Z], X \cdot h-Z \cdot f) \tag{23}
\end{equation*}
$$

$((X, f),(Z, h)) \in\left(\mathcal{V}^{1}(M) \times C^{\infty}(M, \mathbf{R})\right)^{2}$, is a real Lie algebra, we may define the Nijenhuis torsion $\mathcal{T}(\mathcal{N})$ of \mathcal{N}. It is a $C^{\infty}(M)$-bilinear map $\mathcal{T}(\mathcal{N}):\left(\mathcal{V}^{1}(M) \times C^{\infty}(M)\right)^{2} \rightarrow$ $\mathcal{V}^{1}(M) \times C^{\infty}(M)$ given by

$$
\begin{align*}
\mathcal{T}(\mathcal{N})((X, f),(Z, h))= & {[\mathcal{N}(X, f), \mathcal{N}(Z, h)]-\mathcal{N}[\mathcal{N}(X, f),(Z, h)] } \\
& -\mathcal{N}[(X, f), \mathcal{N}(Z, h)]+\mathcal{N}^{2}[(X, f),(Z, h)], \tag{24}\\
((X, f),(Z, h)) \in\left(\mathcal{V}^{1}(M) \times\right. & \left.C^{\infty}(M)\right)^{2} .
\end{align*}
$$

Definition 4.1. A $C^{\infty}(M)$-linear map $\mathcal{N}: \mathcal{V}^{1}(M) \times C^{\infty}(M) \rightarrow \mathcal{V}^{1}(M) \times C^{\infty}(M)$ is a Nijenhuis operator on M, if it has a vanishing Nijenhuis torsion.

Suppose now that M is equipped with a Jacobi structure (Λ_{0}, E_{0}) and a Nijenhuis operator \mathcal{N}. Then, we may define a tensor field Λ_{1} of type $(2,0)$ and a vector field E_{1} on M, by setting

$$
\begin{equation*}
\left(\Lambda_{1}, E_{1}\right)^{\#}=\mathcal{N} \circ\left(\Lambda_{0}, E_{0}\right)^{\#} \tag{25}
\end{equation*}
$$

Recall that two Jacobi structures $\left(\Lambda_{0}, E_{0}\right)$ and $\left(\Lambda_{1}, E_{1}\right)$, defined on the same differentiable manifold, are said to be compatible if their sum $\left(\Lambda_{0}+\Lambda_{1}, E_{0}+E_{1}\right)$ is again a Jacobi structure (cf. [12]).

If one looks for the conditions that assure the pair $\left(\Lambda_{1}, E_{1}\right)$, given by (25), defines a new Jacobi structure on M, compatible with (Λ_{0}, E_{0}), one finds (cf. [7]):

1. Λ_{1} is skew-symmetric if and only if $\mathcal{N} \circ\left(\Lambda_{0}, E_{0}\right)^{\#}=\left(\Lambda_{0}, E_{0}\right)^{\#} \circ{ }^{t} \mathcal{N}$, where ${ }^{t} \mathcal{N}$ is the transpose of \mathcal{N}. This condition is equivalent to $N E_{0}=\Lambda_{0}^{\#}(\gamma)+g E_{0}, N \Lambda_{0}^{\#}-Y \otimes$ $E_{0}=\Lambda_{0}^{\# \mathrm{t}} N+E_{0} \otimes Y$ and $\left\langle\gamma, E_{0}\right\rangle=0$. Then,

$$
\begin{equation*}
\Lambda_{1}^{\#}=N \Lambda_{0}^{\#}-Y \otimes E_{0}=\Lambda_{0}^{\# \mathrm{t}} N+E_{0} \otimes Y \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{1}=N E_{0}=\Lambda_{0}^{\#}(\gamma)+g E_{0} \tag{27}
\end{equation*}
$$

2. When Λ_{1} is skew-symmetric, (Λ_{1}, E_{1}) defines a Jacobi structure on M if and only if, for all $(\alpha, f),(\beta, h) \in \Omega^{1}(M) \times C^{\infty}(M)$,

$$
\begin{aligned}
& \mathcal{T}(\mathcal{N})\left(\left(\Lambda_{0}, E_{0}\right)^{\#}(\alpha, f),\left(\Lambda_{0}, E_{0}\right)^{\#}(\beta, h)\right) \\
& \quad=\mathcal{N} \circ\left(\Lambda_{0}, E_{0}\right)^{\#}\left(\mathcal{C}\left(\left(\Lambda_{0}, E_{0}\right), \mathcal{N}\right)((\alpha, f),(\beta, h))\right)
\end{aligned}
$$

where $\mathcal{C}\left(\left(\Lambda_{0}, E_{0}\right), \mathcal{N}\right)$ is the concomitant of $\left(\Lambda_{0}, E_{0}\right)$ and \mathcal{N} which is given, for all $(\alpha, f),(\beta, h) \in \Omega^{1}(M) \times C^{\infty}(M)$, by

$$
\begin{aligned}
& \mathcal{C}\left(\left(\Lambda_{0}, E_{0}\right), \mathcal{N}\right)((\alpha, f),(\beta, h)) \\
&=\{(\alpha, f),(\beta, h)\}_{1}-\left\{{ }^{t} \mathcal{N}(\alpha, f),(\beta, h)\right\}_{0} \\
&-\left\{(\alpha, f),{ }^{\mathrm{N}} \mathcal{N}(\beta, h)\right\}_{0}+{ }^{\mathrm{t}} \mathcal{N}\{(\alpha, f),(\beta, h)\}_{0}
\end{aligned}
$$

($\{,\}_{i}$ is the bracket (6) associated with the Jacobi structure $\left(\Lambda_{i}, E_{i}\right), i=0,1$).
3. In the case where $\left(\Lambda_{1}, E_{1}\right)$ is a Jacobi structure, it is compatible with $\left(\Lambda_{0}, E_{0}\right)$ if and only if, for all $(\alpha, f),(\beta, h) \in \Omega^{1}(M) \times C^{\infty}(M)$,

$$
\left(\Lambda_{0}, E_{0}\right)^{\#}\left(\mathcal{C}\left(\left(\Lambda_{0}, E_{0}\right), \mathcal{N}\right)((\alpha, f),(\beta, h))\right)=0
$$

Definition 4.2. A Jacobi-Nijenhuis manifold $\left(M,\left(\Lambda_{0}, E_{0}\right), \mathcal{N}\right)$ is a Jacobi manifold (M, Λ_{0}, E_{0}) with a Nijenhuis operator \mathcal{N} which is compatible with $\left(\Lambda_{0}, E_{0}\right)$, i.e.: (i) $\mathcal{N} \circ\left(\Lambda_{0}, E_{0}\right)^{\#}=\left(\Lambda_{0}, E_{0}\right)^{\#} \circ^{t} \mathcal{N}$ and (ii) the map $\left(\Lambda_{0}, E_{0}\right)^{\#} \circ \mathcal{C}\left(\left(\Lambda_{0}, E_{0}\right), \mathcal{N}\right):\left(\Omega^{1}(M) \times\right.$ $\left.C^{\infty}(M)\right)^{2} \rightarrow \mathcal{V}^{1}(M) \times C^{\infty}(M)$ identically vanishes on $M . \mathcal{N}$ is called the recursion operator of $\left(M,\left(\Lambda_{0}, E_{0}\right), \mathcal{N}\right)$.

Theorem 4.3 (Marrero et al. [7]). Let $\left(\left(\Lambda_{0}, E_{0}\right), \mathcal{N}\right)$ be a Jacobi-Nijenhuis structure on a differentiable manifold M. Then, there exists a hierarchy $\left(\left(\Lambda_{k}, E_{k}\right), k \in \mathbb{N}\right)$ of Jacobi structures on M, which are pairwise compatible. For all $k \in \mathbb{N},\left(\Lambda_{k}, E_{k}\right)$ is the Jacobi structure associated with the vector bundle map $\left(\Lambda_{k}, E_{k}\right)^{\#}$ given by $\left(\Lambda_{k}, E_{k}\right)^{\#}=\mathcal{N}^{k} \circ$ $\left(\Lambda_{0}, E_{0}\right)^{\#}$. Moreover, for all $k, l \in \mathbb{N}$, the pair $\left(\left(\Lambda_{k}, E_{k}\right), \mathcal{N}^{l}\right)$ defines a Jacobi-Nijenhuis structure on M.

Next proposition shows a relation between Jacobi-Nijenhuis manifolds and homogeneous Poisson-Nijenhuis structures.

Proposition 4.4 (Petalidou and Nunes da Costa [13]). With each Jacobi-Nijenhuis manifold $\left(M_{\tilde{\sim}}(\Lambda, E), \mathcal{N}\right), \mathcal{N}:=(N, Y, \gamma, g)$, a homogeneous Poisson-Nijenhuis manifold $(\tilde{M}, \tilde{\Lambda}, \tilde{N}, \tilde{T})$ can be associated, where $(\tilde{M}, \tilde{\Lambda}, \tilde{T})$ is the Poissonization of (M, Λ, E) and \tilde{N} is the Nijenhuis tensor field on \tilde{M} given by

$$
\begin{equation*}
\tilde{N}=N+Y \otimes \mathrm{~d} t+\frac{\partial}{\partial t} \otimes \gamma+g \frac{\partial}{\partial t} \otimes \mathrm{~d} t . \tag{28}
\end{equation*}
$$

Finally, we recall the notion of conformal equivalence of Jacobi-Nijenhuis structures on a differentiable manifold M.

Proposition 4.5 (Petalidou and Nunes da Costa [13]). Let $\left(\left(\Lambda_{0}, E_{0}\right), \mathcal{N}\right)$ be a JacobiNijenhuis structure on $M,\left(\Lambda_{1}, E_{1}\right)$ the Jacobi structure associated with $\left(\Lambda_{1}, E_{1}\right)^{\#}=$ $\mathcal{N} \circ\left(\Lambda_{0}, E_{0}\right)^{\#}, a \in C^{\infty}(M)$ a function which vanishes nowhere, and $\left(\Lambda_{0}^{a}, E_{0}^{a}\right)$ (resp. $\left.\left(\Lambda_{1}^{a}, E_{1}^{a}\right)\right)$ the Jacobi structure a-conformal to $\left(\Lambda_{0}, E_{0}\right)\left(\right.$ resp. $\left.\left(\Lambda_{1}, E_{1}\right)\right)$. Then, there exists a Nijenhuis operator $\mathcal{N}^{a}:=\left(N^{a}, Y^{a}, \gamma^{a}, g^{a}\right)$ such that $\left(\Lambda_{1}^{a}, E_{1}^{a}\right)^{\#}=\mathcal{N}^{a} \circ\left(\Lambda_{0}^{a}, E_{0}^{a}\right)^{\#}$, with

$$
\begin{align*}
& N^{a}=N-Y \otimes \frac{\mathrm{~d} a}{a}, \quad Y^{a}=Y, \tag{29}\\
& \gamma^{a}=\gamma+{ }^{\mathrm{t}} N \frac{\mathrm{~d} a}{a}-\left(g+\frac{1}{a} L_{Y} a\right) \frac{\mathrm{d} a}{a}, \quad g^{a}=g+\frac{1}{a} L_{Y} a . \tag{30}
\end{align*}
$$

The Jacobi-Nijenhuis structure $\left(\left(\Lambda_{0}^{a}, E_{0}^{a}\right), \mathcal{N}^{a}\right)$ is said to be a-conformal to $\left(\left(\Lambda_{0}, E_{0}\right), \mathcal{N}\right)$.

5. Reduction of Jacobi-Nijenhuis manifolds

In this section, we present the main result of this paper: a reduction theorem for JacobiNijenhuis manifolds. We also study the reduction of conformally equivalent JacobiNijenhuis structures and the relation between the Jacobi-Nijenhuis and homogeneous Poisson-Nijenhuis reduction.

Theorem 5.1. Let $(M,(\Lambda, E), \mathcal{N}), \mathcal{N}:=(N, Y, \gamma, g)$, be a Jacobi-Nijenhuis manifold, S a submanifold of $M, i: S \hookrightarrow M$ the canonical injection, and F a vector sub-bundle of $T_{S} M$, which satisfy the conditions 1 and 2 of Theorem 2.1 and also

1. $\left(\left.\Lambda\right|_{S}\right)^{\#}\left(F^{0}\right) \subset T S$ and $\left.E\right|_{S}$ is a section of $T S$;
2. $\left.N\right|_{S}(T S) \subset T S,\left.N\right|_{S}(F) \subset F$ and N_{S}, given by (16), sends projectable vector fields to projectable vector fields;
3. Y is tangent to S and $Y_{S}=\lambda\left(\left.Y\right|_{S}\right) \in \mathcal{V}^{1}(S)$ is a projectable vector field, where λ : $T_{S} M \rightarrow T S$ is a (projection) vector bundle map such that its restriction to TS is the identity map and $F \subset \operatorname{Ker} \lambda$;
4. $\left.\gamma\right|_{S}$ is a section of $(T S \cap F)^{0}$ and, for all sections Z of $T S \cap F, i_{Z} d\left({ }^{\mathrm{t}}(T i)\left(\left.\gamma\right|_{S}\right)\right)=0$;
5. $\left.g\right|_{S}$ is constant on the leaves of S.

Under these conditions, there exists on \hat{S} a Jacobi-Nijenhuis structure $((\hat{\Lambda}, \hat{E}), \hat{\mathcal{N}}), \hat{\mathcal{N}}:=$ ($\hat{N}, \hat{Y}, \hat{\gamma}, \hat{g}$), where $(\hat{\Lambda}, \hat{E})$ is given by (12) and (13), \hat{N} is given by (17), $\hat{Y}=\left.T \pi \circ \lambda \circ Y\right|_{S}$, $\hat{\gamma} \in \Omega^{1}(\hat{S})$ is such that ${ }^{\mathrm{t}} T \pi(\hat{\gamma})={ }^{\mathrm{t}}(T i)\left(\left.\gamma\right|_{S}\right)$, and $\hat{g} \in C^{\infty}(\hat{S})$ is given by $\hat{g} \circ \pi=$ $\left.g\right|_{s}$. The Jacobi-Nijenhuis manifold $(\hat{S},(\hat{\Lambda}, \hat{E}), \hat{\mathcal{N}})$ is said to have been obtained from $(M,(\Lambda, E), \mathcal{N})$ by reduction via (S, F).

Proof. Since all the conditions of Theorem 2.1 hold, \hat{S} is endowed with a (reduced) Jacobi structure $(\hat{\Lambda}, \hat{E})$, given by (12) and (13). It remains to show that the Nijenhuis operator $\mathcal{N}:=(N, Y, \gamma, g)$ also reduces to a Nijenhuis operator $\hat{\mathcal{N}}$ on \hat{S} compatible with $(\hat{\Lambda}, \hat{E})$.

As in the case of Theorem 3.1, condition 2 guarantees the existence of a tensor field \hat{N} of type $(1,1)$ on \hat{S}, given by (17). From condition 3, the vector field $Y_{S}=\lambda\left(\left.Y\right|_{S}\right) \in \mathcal{V}^{1}(S)$ is projectable and we denote by $\hat{Y} \in \mathcal{V}^{1}(\hat{S})$ its projection. Also, by hypothesis 4, the 1-form $\gamma_{S}={ }^{\mathrm{t}}(T i)\left(\left.\gamma\right|_{S}\right)$ on S is projectable and we denote by $\hat{\gamma} \in \Omega^{1}(\hat{S})$ its projection. Finally, from condition 5 , there exists a function $\hat{g} \in C^{\infty}(\hat{S})$ such that $\hat{g} \circ \pi=g \mid s$. Thus, we obtain a $C^{\infty}(\hat{S})$-linear map, $\hat{\mathcal{N}}: \mathcal{V}^{1}(\hat{S}) \times C^{\infty}(\hat{S}) \rightarrow \mathcal{V}^{1}(\hat{S}) \times C^{\infty}(\hat{S}), \hat{\mathcal{N}}:=(\hat{N}, \hat{Y}, \hat{\gamma}, \hat{g})$, defined as in (22). Using the properties of the restriction $\left.\mathcal{N}\right|_{S}:=\left(\left.N\right|_{S},\left.Y\right|_{S},\left.\gamma\right|_{S},\left.g\right|_{S}\right)$ of \mathcal{N} to the submanifold S, a straightforward calculation shows that $\hat{\mathcal{N}}$ has a vanishing Nijenhuis torsion.

In order to conclude that $((\hat{\Lambda}, \hat{E}), \hat{\mathcal{N}})$ defines a Jacobi-Nijenhuis structure on \hat{S}, we have to prove that $\hat{\mathcal{N}} \circ(\hat{\Lambda}, \hat{E})^{\#}=(\hat{\Lambda}, \hat{E})^{\#} \circ{ }^{t} \hat{\mathcal{N}}$ and that $(\hat{\Lambda}, \hat{E})^{\#} \circ \mathcal{C}((\hat{\Lambda}, \hat{E}), \hat{\mathcal{N}})=0$. Let $\hat{\alpha} \in \Omega^{1}(\hat{S}), \hat{f} \in C^{\infty}(\hat{S})$, and consider ${ }^{\mathrm{t}}(T \pi \circ \lambda)(\hat{\alpha})$, which is a section of $T_{S}^{*} M$, and $f \in C^{\infty}(M)$ an extension of $\hat{f} \circ \pi$, i.e., $\left.f\right|_{S}=\hat{f} \circ \pi$. Then,

$$
\begin{equation*}
\left.\mathcal{N}\right|_{S}\left(\left(\left.\Lambda\right|_{S},\left.E\right|_{S}\right)^{\#}\left({ }^{\mathrm{t}}(T \pi \circ \lambda)(\hat{\alpha}),\left.f\right|_{S}\right)\right)=\left(\left.\Lambda\right|_{S},\left.E\right|_{S}\right)^{\#}\left(\left.{ }^{\mathrm{t}} \mathcal{N}\right|_{S}\left({ }^{\mathrm{t}}(T \pi \circ \lambda)(\hat{\alpha}),\left.f\right|_{S}\right)\right) \tag{31}
\end{equation*}
$$

Since $\left(\left.\Lambda\right|_{S}\right)^{\#}\left({ }^{\mathrm{t}}(T \pi \circ \lambda)(\hat{\alpha})\right)$ is a section of $\left(\left.\Lambda\right|_{S}\right)^{\#}\left(F^{0}\right) \subset T S$ and $\left.E\right|_{S}$ is a section of $T S$, the image by $(T \pi \circ \lambda)$ of the term vector field of the first member of (31) is equal to

$$
\begin{equation*}
\hat{N}\left(\hat{\Lambda}^{\#}(\hat{\alpha})\right)+\hat{f} \hat{N}(\hat{E})-\langle\hat{\alpha}, \hat{E}\rangle \hat{Y} \tag{32}
\end{equation*}
$$

Because ${ }^{\mathrm{t}} \lambda\left({ }^{\mathrm{t}} N_{S}\left({ }^{\mathrm{t}} T \pi(\hat{\alpha})\right)\right)-\left.{ }^{\mathrm{t}} N\right|_{S}\left({ }^{\mathrm{t}}(T \pi \circ \lambda)(\hat{\alpha})\right)$ is a section of $(T S)^{0}$ and $(\Lambda \mid S)^{\#}\left((T S)^{0}\right)$ $\subset F$, we get

$$
T \pi \circ \lambda\left((\Lambda \mid S)^{\#}\left({ }^{\mathrm{t}} N \mid S\left({ }^{\mathrm{t}}(T \pi \circ \lambda)(\hat{\alpha})\right)\right)\right)=\hat{\Lambda}^{\#}\left({ }^{\mathrm{t}} \hat{N}(\hat{\alpha})\right)
$$

and we may conclude that the image by $(T \pi \circ \lambda)$ of the term vector field of the second member of (31) is equal to

$$
\begin{equation*}
\hat{\Lambda}^{\#}\left({ }^{\mathrm{t}} \hat{N}(\hat{\alpha})\right)+\hat{f} \hat{\Lambda}^{\#}(\hat{\gamma})+\langle\hat{\alpha}, \hat{Y}\rangle \hat{E}+\hat{f} \hat{g} \hat{E} \tag{33}
\end{equation*}
$$

From (32) and (33), we obtain

$$
\hat{N}\left(\hat{\Lambda}^{\#}(\hat{\alpha})\right)+\hat{f} \hat{N}(\hat{E})-\langle\hat{\alpha}, \hat{E}\rangle \hat{Y}=\hat{\Lambda}^{\#}\left({ }^{t} \hat{N}(\hat{\alpha})\right)+\hat{f} \hat{\Lambda}^{\#}(\hat{\gamma})+\langle\hat{\alpha}, \hat{Y}\rangle \hat{E}+\hat{f} \hat{g} \hat{E}
$$

which means that the term vector field of $\hat{\mathcal{N}} \circ(\hat{\Lambda}, \hat{E})^{\#}(\hat{\alpha}, \hat{f})$ coincides with the term vector field of $(\hat{\Lambda}, \hat{E})^{\#} \circ{ }^{t} \hat{\mathcal{N}}(\hat{\alpha}, \hat{f})$. In a similar way, one can prove that the term function of
$\hat{\mathcal{N}} \circ(\hat{\Lambda}, \hat{E})^{\#}(\hat{\alpha}, \hat{f})$ is equal to the term function of $(\hat{\Lambda}, \hat{E})^{\#} \circ{ }^{t} \hat{\mathcal{N}}(\hat{\alpha}, \hat{f})$. Since $\hat{\alpha} \in \Omega^{1}(\hat{S})$ and $\hat{f} \in C^{\infty}(\hat{S})$ are arbitrary, we obtain $\hat{\mathcal{N}} \circ(\hat{\Lambda}, \hat{E})^{\#}=(\hat{\Lambda}, \hat{E})^{\#} \circ{ }^{t} \hat{\mathcal{N}}$. Applying the same kind of technical arguments as before, we can deduce, after a hard computation, that $(\hat{\Lambda}, \hat{E})^{\#} \circ \mathcal{C}((\hat{\Lambda}, \hat{E}), \hat{\mathcal{N}})=0$.

Remark 5.2. Under the assumptions of Theorem 5.1, if $(M,(\Lambda, E), \mathcal{N})$ is a JacobiNijenhuis manifold which is reducible via (S, F) to $\left(\hat{S},\left(\hat{\Lambda}_{0}, \hat{E}_{0}\right), \hat{\mathcal{N}}\right)$, then, each member ($\hat{\Lambda}_{k}, \hat{E}_{k}$) of the hierarchy $\left(\left(\hat{\Lambda}_{k}, \hat{E}_{k}\right), k \in \mathbb{N}\right)$ of Jacobi structures on \hat{S}, given by Theorem 4.3, is obtained by reduction via (S, F), from the corresponding member $\left(\Lambda_{k}, E_{k}\right)$ of the hierarchy $\left(\left(\Lambda_{k}, E_{k}\right), k \in \mathbb{N}\right)$ of Jacobi structures on M.

Next proposition establishes a relation between reduction and conformal equivalence of Jacobi-Nijenhuis structures.

Proposition 5.3. Let $(M,(\Lambda, E), \mathcal{N}), \mathcal{N}:=(N, Y, \gamma, g)$, be a Jacobi-Nijenhuis manifold, S a submanifold of M and F a vector sub-bundle of $T_{S} M$ which satisfy the conditions of Theorem 2.1, and $(\hat{S},(\hat{\Lambda}, \hat{E}), \hat{\mathcal{N}}), \hat{\mathcal{N}}:=(\hat{N}, \hat{Y}, \hat{\gamma}, \hat{g})$, the Jacobi-Nijenhuis manifold obtained from $(M,(\Lambda, E), \mathcal{N})$ by reduction via (S, F). Let a $\in C^{\infty}(M)$ be a function which vanishes nowhere and such that d a is a section of F^{0}, and $\left(\left(\Lambda^{a}, E^{a}\right), \mathcal{N}^{a}\right)$ the JacobiNijenhuis structure on M, a-conformal to $((\Lambda, E), \mathcal{N})$. Then $\left(M,\left(\Lambda^{a}, E^{a}\right), \mathcal{N}^{a}\right)$ is reducible via (S, F) and the reduced structure on \hat{S} is conformally equivalent to $((\hat{\Lambda}, \hat{E}), \hat{\mathcal{N}})$.

Proof. Since d a is a section of F^{0}, it is easy to check that if the Jacobi structure (Λ, E) on M is reducible via (S, F), then the a-conformal Jacobi structure (Λ^{a}, E^{a}) on M is also reducible via (S, F). Furthermore, condition 1 of Theorem 5.1 holds. So, \hat{S} is equipped with two (reduced) Jacobi structures $(\hat{\Lambda}, \hat{E})$ and ($\widehat{\Lambda^{a}}, \widehat{E^{a}}$) that are compatible (cf. [12]). But $\widehat{\Lambda^{a}}=\hat{\Lambda}^{\hat{a}}$ and $\widehat{E^{a}}=\hat{E}^{\hat{a}}$, where $\hat{a} \in C^{\infty}(\hat{S})$ is given by $\hat{a} \circ \pi=\left.a\right|_{S}$; i.e., the Jacobi structures $(\hat{\Lambda}, \hat{E})$ and ($\left.\widehat{\Lambda^{a}}, \widehat{E^{a}}\right)$ on \hat{S} are conformally equivalent.

It remains to check that $\mathcal{N}^{a}:=\left(N^{a}, Y^{a}, \gamma^{a}, g^{a}\right)$ verifies the conditions 2-5 of Theorem 5.1. Because Y is tangent to S and d a vanishes on $F,\left.N^{a}\right|_{S}(T S) \subset T S$ and $\left.N^{a}\right|_{S}(F) \subset F$. Let $X \in \mathcal{V}^{1}(S)$ be a projectable vector field. Then, we have that $N_{S}^{a}(X)=N_{S}(X)-\langle\mathrm{d} a / a, X\rangle Y_{S}$ and, for any section Z of $T S \cap F$,

$$
L_{Z}\left(N_{S}^{a}(X)\right)=L_{Z}\left(N_{S}(X)\right)-\left\langle\frac{\mathrm{d} a}{a}, X\right\rangle L_{Z} Y_{S}
$$

is also a section of $T S \cap F$. So, $N_{S}^{a}(X) \in \mathcal{V}^{1}(S)$ and it is a projectable vector field. Also,

$$
L_{Z} g^{a}=L_{Z} g+\left(L_{Z} \frac{1}{a}\right) L_{Y} a+\frac{1}{a} L_{Z}\left(L_{Y} a\right)=0,
$$

for all sections Z of $T S \cap F$, which implies that g^{a} is constant on the leaves of S. Finally, for the restriction $\left.\gamma^{a}\right|_{S}$ of $\gamma^{a} \in \Omega^{1}(M)$ to the submanifold S, since $\left.{ }^{\mathrm{t}} N\right|_{S}\left(F^{0}\right) \subset F^{0}$, we obtain that $\left.\gamma^{a}\right|_{S}$ is a section of $(T S \cap F)^{0}$ and that $i_{Z} d\left({ }^{\mathrm{t}} T i\left(\gamma^{a} \mid S\right)\right)=0$, for all sections Z of $T S \cap F$. From the definitions of \mathcal{N}^{a} and $\hat{\mathcal{N}}$, it follows that $\widehat{\mathcal{N}^{a}}=\hat{\mathcal{N}} \hat{a}$.

Examples 5.4.

1. Let M be a five-dimensional C^{∞}-differentiable manifold equipped with a JacobiNijenhuis structure $((\Lambda, E), \mathcal{N}), \mathcal{N}:=(N, Y, \gamma, g)$, which is given, in local coordinates $\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)$, by

$$
\begin{aligned}
\Lambda= & \frac{3}{2} \frac{\partial}{\partial x_{0}} \wedge\left(x_{1} \frac{\partial}{\partial x_{1}}+x_{3} \frac{\partial}{\partial x_{3}}\right)+\frac{\partial}{\partial x_{1}} \wedge \frac{\partial}{\partial x_{2}}+\frac{\partial}{\partial x_{3}} \wedge \frac{\partial}{\partial x_{4}}, \quad E=\frac{3}{2} \frac{\partial}{\partial x_{0}}, \\
N= & \left(-x_{4} \frac{\partial}{\partial x_{0}}+\frac{\partial}{\partial x_{2}}+\frac{\partial}{\partial x_{3}}\right) \otimes \mathrm{d} x_{0} \\
& -\left(\left(x_{4}+\frac{3}{2} x_{1}\right) \frac{\partial}{\partial x_{1}}+\frac{3}{2}\left(x_{3}-x_{2}\right) \frac{\partial}{\partial x_{3}}\right) \otimes \mathrm{d} x_{1} \\
& +\left(-x_{4} \frac{\partial}{\partial x_{2}}+\frac{5}{2} x_{1} \frac{\partial}{\partial x_{3}}\right) \otimes \mathrm{d} x_{2}-x_{4} \frac{\partial}{\partial x_{3}} \otimes \mathrm{~d} x_{3} \\
& +\left(\frac{1}{2} x_{0} \frac{\partial}{\partial x_{0}}-x_{1} \frac{\partial}{\partial x_{1}}+\frac{3}{2} x_{2} \frac{\partial}{\partial x_{2}}+\frac{3}{2} x_{3} \frac{\partial}{\partial x_{3}}-x_{4} \frac{\partial}{\partial x_{4}}\right) \otimes \mathrm{d} x_{4}, \\
Y= & -\frac{3}{2} x_{1}^{2} \frac{\partial}{\partial x_{1}}+\left(\frac{1}{3} x_{0}+\frac{3}{2} x_{1}\left(x_{2}-x_{3}\right)\right) \frac{\partial}{\partial x_{3}}, \\
\gamma= & \frac{3}{2}\left(\mathrm{~d} x_{1}-\mathrm{d} x_{4}\right), \quad g=\frac{3}{2} x_{1}-x_{4} .
\end{aligned}
$$

If F denotes the vector sub-bundle of $T M$ generated by the vector field $\left(\partial / \partial x_{3}\right)$, it is easy to check that all the conditions of Theorem 5.1 hold. So, $(M,(\Lambda, E), \mathcal{N})$ is reducible via (M, F) to a Jacobi-Nijenhuis manifold $(\hat{M},(\hat{\Lambda}, \hat{E}), \hat{\mathcal{N}}), \hat{\mathcal{N}}:=(\hat{N}, \hat{Y}, \hat{\gamma}, \hat{g})$, where

$$
\begin{aligned}
\hat{\Lambda}= & \frac{3}{2} x_{1} \frac{\partial}{\partial x_{0}} \wedge \frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{1}} \wedge \frac{\partial}{\partial x_{2}}, \quad \hat{E}=\frac{3}{2} \frac{\partial}{\partial x_{0}}, \\
\hat{N}= & \left(-x_{4} \frac{\partial}{\partial x_{0}}+\frac{\partial}{\partial x_{2}}\right) \otimes \mathrm{d} x_{0}-\left(x_{4}+\frac{3}{2} x_{1}\right) \frac{\partial}{\partial x_{1}} \otimes \mathrm{~d} x_{1}-x_{4} \frac{\partial}{\partial x_{2}} \otimes \mathrm{~d} x_{2} \\
& +\left(\frac{1}{2} x_{0} \frac{\partial}{\partial x_{0}}-x_{1} \frac{\partial}{\partial x_{1}}+\frac{3}{2} x_{2} \frac{\partial}{\partial x_{2}}-x_{4} \frac{\partial}{\partial x_{4}}\right) \otimes \mathrm{d} x_{4}, \\
\hat{Y}= & -\frac{3}{2} x_{1}^{2} \frac{\partial}{\partial x_{1}}, \quad \hat{\gamma}=\frac{3}{2}\left(\mathrm{~d} x_{1}-\mathrm{d} x_{4}\right), \quad \hat{g}=\frac{3}{2} x_{1}-x_{4} .
\end{aligned}
$$

2. Let (M, Λ, N) be a Poisson-Nijenhuis manifold which is reducible via (S, F) to a Poisson-Nijenhuis manifold $(\hat{S}, \hat{\Lambda}, \hat{N})$ in the sense of Theorem 3.1, and let $a \in C^{\infty}(M)$ be a function that never vanishes. Then, $\left(M,\left(a \Lambda, \Lambda^{\#}(\mathrm{~d} a)\right), \mathcal{N}\right), \mathcal{N}:=\left(N, 0,{ }^{\mathrm{t}} N(\mathrm{~d} a /\right.$ $a), 0$), is a Jacobi-Nijenhuis manifold. Moreover, if $a \in C^{\infty}(M)$ is in the conditions of Proposition 5.3, from the Poisson-Nijenhuis reduction assumptions on Λ and N, one can deduce that $\left(M,\left(a \Lambda, \Lambda^{\#}(\mathrm{~d} a)\right), \mathcal{N}\right)$ is reducible via (S, F) to the Jacobi-Nijenhuis manifold $\left(\hat{S},\left(\hat{a} \hat{\Lambda}, \hat{\Lambda}^{\#}(\mathrm{~d} \hat{a})\right), \hat{\mathcal{N}}\right), \hat{\mathcal{N}}:=\left(\hat{N}, 0,{ }^{\mathrm{t}} \hat{N}(\mathrm{~d} \hat{a} / \hat{a}), 0\right)$, where $\hat{a} \in C^{\infty}(\hat{S})$ is given by $\hat{a} \circ \pi=\left.a\right|_{S}$.

Now we are going to present the relationship between the reduction of a JacobiNijenhuis manifold and the reduction of the corresponding homogeneous PoissonNijenhuis manifold, in the sense of Proposition 4.4.

Let $(M,(\Lambda, E), \mathcal{N})$ be a Jacobi-Nijenhuis manifold, S a submanifold of M, F a vector sub-bundle of $T_{S} M$, and $(\tilde{M}, \tilde{\Lambda}, \tilde{N}, \tilde{T})$ the corresponding homogeneous PoissonNijenhuis manifold, in the sense of Proposition 4.4. Consider the submanifold $\tilde{S}=S \times \mathbb{R}$ of $\tilde{M}=M \times \mathbb{R}$ and the vector sub-bundle \tilde{F} of $T_{\tilde{S}} \tilde{M}$ given by $\tilde{F}=F \times\{0\}$. Then, $T \tilde{S} \cap \tilde{F}=(T S \cap F) \times\{0\}$. We denote by $\tilde{i}: \tilde{S} \hookrightarrow \tilde{M}$ the canonical injection and by $\tilde{\lambda}: T_{\tilde{S}} \tilde{M} \rightarrow T \tilde{S}$ a (projection) vector bundle map such that its restriction to $T \tilde{S}$ is the identity map and $\tilde{F} \subset \operatorname{Ker} \tilde{\lambda}$. We should point out that the vector field $\tilde{T}=\partial / \partial t$ is tangent to $\tilde{S},\left.\tilde{T}\right|_{\tilde{S}} \notin \operatorname{Ker} \tilde{\lambda}$ and $\tilde{\lambda}\left(\left.\tilde{T}\right|_{\tilde{S}}\right) \in \mathcal{V}^{1}(\tilde{S})$ is a projectable vector field. Under these assumptions, we can state the following result.

Proposition 5.5. If the homogeneous Poisson-Nijenhuis manifold $(\tilde{M}, \tilde{\Lambda}, \tilde{N}, \tilde{T})$ is reduced via (\tilde{S}, \tilde{F}) to a homogeneous Poisson-Nijenhuis manifold $(\hat{\tilde{S}}, \hat{\tilde{\Lambda}}, \hat{\tilde{N}}, \hat{\tilde{T}})$, then the Jacobi-Nijenhuis manifold $(M,(\Lambda, E), \mathcal{N})$ is reducible via (S, F) to a Jacobi-Nijenhuis manifold $(\hat{S},(\hat{\Lambda}, \hat{E}), \hat{\mathcal{N}})$.

Moreover, $(\hat{\tilde{S}}, \hat{\tilde{\Lambda}}, \hat{\tilde{N}}, \hat{\tilde{T}})$ is the homogeneous Poisson-Nijenhuis manifold that corresponds to $(\hat{S},(\hat{\Lambda}, \hat{E}), \hat{\mathcal{N}})$ in the sense of Proposition 4.4.

The following lemma is useful in the proof of Proposition 5.5.
Lemma 5.6. A vector field $\tilde{X} \in \mathcal{V}^{1}(\tilde{S})$ is projectable by $\tilde{\pi}: \tilde{S} \rightarrow \hat{\tilde{S}}$ if and only if $\tilde{X}=X+\tilde{f}(\partial / \partial t)$, where $X \in \mathcal{V}^{1}(S)$ is projectable by $\pi: S \rightarrow \hat{S}$ and $\tilde{f} \in C^{\infty}(\tilde{S})$ is such that $L_{Z} \tilde{f}=0$, for all sections Z of $T S \cap F$.

Proof. Taking into account that a vector field $\tilde{X} \in \mathcal{V}^{1}(\tilde{S})$ can be written as $\tilde{X}=X+$ $\tilde{f}(\partial / \partial t)$, with $X \in \mathcal{V}^{1}(S)$ and $\tilde{f} \in C^{\infty}(\tilde{S})$, and that a section of $T \tilde{S} \cap \tilde{F}$ can be identified with a section of $T S \cap F$, the conclusion follows readily.

Proof (of Proposition 5.5). It is known (cf. [10]) that if the Poisson manifold ($\hat{\tilde{S}}, \hat{\tilde{\Lambda}}$) is obtained from $(\tilde{M}, \tilde{\Lambda})$ by reduction via (\tilde{S}, \tilde{F}), then the Jacobi manifold $(\hat{S}, \hat{\Lambda}, \hat{E})$ is obtained from (M, Λ, E) by reduction via (S, F) and, as a consequence of $T \tilde{S} \cap \tilde{F}=$ $(T S \cap F) \times\{0\}, \hat{\tilde{S}}=\hat{S} \times \mathbb{R}$. Moreover, since $\tilde{F}^{0}=F^{0} \times T^{*} \mathbb{R},(\tilde{\Lambda} \mid \tilde{\tilde{S}})^{\#}\left(\tilde{F}^{0}\right) \subset T \tilde{S}$ implies $\left(\left.\Lambda\right|_{S}\right)^{\#}\left(F^{0}\right) \subset T S$ and that $\left.E\right|_{S}$ is a section of $T S$. From $\left.\tilde{N}\right|_{\tilde{S}}(\tilde{F}) \subset \tilde{F}$, we obtain $\left.N\right|_{S}(F) \subset F$ and also that $\left.\gamma\right|_{S}$ is a section of $(T S \cap F)^{0}$, and from $\left.\tilde{N}\right|_{\tilde{S}}(T \tilde{S}) \subset T \tilde{S}$, we get $\left.N\right|_{S}(T S) \subset T S$ and we may conclude that Y is tangent to S. Let $X \in \mathcal{V}^{1}(S)$ be a projectable vector field. Using the fact that $\tilde{X}=X+\partial / \partial t \in \mathcal{V}^{1}(\tilde{S})$ is a projectable vector field and hence $\tilde{N}_{\tilde{S}}(\tilde{X})=N_{S}(X)+Y_{S}+\left(\left\langle\gamma_{S}, X\right\rangle+g_{S}\right) \partial / \partial t$ is also a projectable vector field, from Lemma 5.6 we conclude that $N_{S}(X)$ and Y_{S} are projectable vector fields on S. In addition, $\tilde{N}_{\tilde{S}}(X)=N_{S}(X)+\left\langle^{\mathrm{t}}(T i)(\gamma \mid S), X\right\rangle(\partial / \partial t) \in \mathcal{V}^{1}(\tilde{S})$ is also a projectable vector field and from Lemma 5.6, for all sections Z of $T S \cap F$,

$$
\begin{equation*}
L_{Z}\left\langle^{\mathrm{t}}(T i)\left(\left.\gamma\right|_{S}\right), X\right\rangle=0 \tag{34}
\end{equation*}
$$

Since (34) holds for all projectable vector fields X on S, and taking into account that, for any $x \in S$, the projectable vector fields form a basis of $T_{x} S$, we deduce that $i_{Z} d\left({ }^{\mathrm{t}} T i(\gamma \mid S)\right)=0$,
for all sections Z of $T S \cap F$. Finally, because $\tilde{N}_{\tilde{S}}(\partial / \partial t)=Y_{S}+g \mid S(\partial / \partial t)$ is a projectable vector field on \tilde{S}, from Lemma 5.6 we have that $\left.L_{Z} g\right|_{S}=0$ for all sections Z of $T S \cap F$. Thus, we conclude that the Jacobi-Nijenhuis manifold $(\hat{S},(\hat{\Lambda}, \hat{E}), \hat{\mathcal{N}})$ is obtained from $(M,(\Lambda, E), \mathcal{N})$ by reduction via (S, F).

The last part of the proposition is a consequence of the fact that $T \tilde{\pi}=\left(T \pi, i d_{T \mathbb{R}}\right)$ and $\tilde{\lambda}=\left(\lambda, i d_{T \mathbb{R}}\right)$.

6. Reduction under Lie group actions

Let ϕ be a left action of a Lie group G on a Jacobi manifold $(M, \Lambda, E) . \phi$ is said to be a Jacobi action if, for all $h \in G$, the map $\phi_{h}: M \rightarrow M, \phi_{h}(x)=\phi(h, x)$, is a Jacobi diffeomorphism. The action ϕ is proper if the space \hat{M} of the orbits has the structure of a differentiable manifold for which the canonical projection $\pi: M \rightarrow \hat{M}$ is a submersion.

Let \mathcal{G} denote the Lie algebra of G. For any $X \in \mathcal{G}$, let $X_{M} \in \mathcal{V}^{1}(M)$ be the fundamental vector field corresponding to X,

$$
X_{M}(x)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}(\phi(\exp (-t X), x))\right|_{t=0}, \quad x \in M
$$

If the Lie group G is connected, then ϕ is a Jacobi action if and only if $\left[X_{M}, \Lambda\right]=0$ and $\left[X_{M}, E\right]=0$, for all $X \in \mathcal{G}$.

Proposition 6.1. Let $(M,(\Lambda, E), \mathcal{N}), \mathcal{N}:=(N, Y, \gamma, g)$, be a Jacobi-Nijenhuis manifold, G a connected Lie group that acts on M with a proper Jacobi action ϕ and F the vector sub-bundle of TM tangent to the orbits of ϕ. If for all $X \in \mathcal{G}, L_{X_{M}} N=0, L_{X_{M}} Y=0$, $L_{X_{M}} \gamma=0, i_{X_{M}} \gamma=0, L_{X_{M}} g=0$, and $N\left(X_{M}\right)=(\xi(X))_{M}$, where $\xi: \mathcal{G} \rightarrow \mathcal{G}$ is an endomorphism, then, the space \hat{M} of the orbits of ϕ is endowed with a structure of a Jacobi-Nijenhuis manifold obtained from $(M,(\Lambda, E), \mathcal{N})$ by reduction via (M, F).

Proof. A straightforward calculation leads to the conclusion that all the conditions of Theorem 5.1 hold.

Let us now suppose that the Jacobi action ϕ of the connected Lie group G on the Jacobi-Nijenhuis manifold $(M,(\Lambda, E), \mathcal{N})$ admits a momentum map J; i.e., a map $J: M \rightarrow \mathcal{G}^{*}$, where \mathcal{G}^{*} is the dual space of the Lie algebra \mathcal{G} of G, such that for all $X \in \mathcal{G}, X_{M}=\Lambda^{\#}(\mathrm{~d}\langle J, X\rangle)+\langle J, X\rangle E$, where $\langle J, X\rangle \in C^{\infty}(M)$ is given by $\langle J, X\rangle(x)=$ $\langle J(x), X\rangle$, for any $x \in M$. In addition, we suppose that J is $A d^{*}$-equivariant, i.e., $J \circ \phi_{h}=$ $A d_{h}^{*} \circ J$, for all $h \in G$, where $A d^{*}$ is the coadjoint action of G on \mathcal{G}^{*}.

Let $\mu \in \mathcal{G}^{*}$ be a weakly regular value of J. Then, $S=J^{-1}(\mu)$ is a submanifold of M and $T_{x} J^{-1}(\mu)=\operatorname{Ker}\left(T_{x} J\right)$, for all $x \in J^{-1}(\mu)$. Denote by F the vector sub-bundle of $T_{S} M$ given by

$$
\begin{equation*}
F=\left\{X_{M}-\langle\mu, X\rangle E, \quad X \in \mathcal{G}\right\} \tag{35}
\end{equation*}
$$

Then $F \cap T\left(J^{-1}(\mu)\right)=\left\{X_{M}-\langle\mu, X\rangle E, X \in \mathcal{G}_{\mu}\right\}$, where \mathcal{G}_{μ} is the Lie algebra of the isotropy group G_{μ}. In [11], we proved that $F \cap T\left(J^{-1}(\mu)\right)$ is a completely integrable
vector sub-bundle of $T\left(J^{-1}(\mu)\right)$ and, if it has constant rank and defines a simple foliation of $J^{-1}(\mu)$, then $\left.\widehat{J^{-1}(\mu)}, \hat{\Lambda}, \hat{E}\right)$ is a Jacobi manifold obtained from (M, Λ, E) by reduction via $\left(J^{-1}(\mu), F\right)$. In this reduction procedure, one verifies that $\left(\left.\Lambda\right|_{S}\right)^{\#}\left(F^{0}\right) \subset T S$ and $\left.E\right|_{S}$ is a section of $T S$.

Keeping the notations of the previous sections, we may establish the following result for Jacobi-Nijenhuis structures.

Proposition 6.2. Let $(M,(\Lambda, E), \mathcal{N}), \mathcal{N}:=(N, Y, \gamma, g)$, be a Jacobi-Nijenhuis manifold such that the vector field E is complete. Let G be a connected Lie group which acts on M with a left Jacobi action that admits an Ad*-equivariant momentum map J. Let $\mu \in \mathcal{G}^{*}$ be a weakly regular value of $J, S=J^{-1}(\mu)$, and F the vector sub-bundle of $T_{S} M$ given by (35). Suppose that $T S \cap F$ has constant rank and defines a simple foliation of S and that the following conditions hold:

1. $\left.T_{S} J \circ N\right|_{S}=T_{S} J$;
2. $\forall X \in \mathcal{G},\left.N\right|_{S}\left(X_{M}-\langle\mu, X\rangle E\right)=(\xi(X))_{M}-\langle\mu, \xi(X)\rangle E$, where $\xi: \mathcal{G} \rightarrow \mathcal{G}$ is an endomorphism;
3. $\forall X \in \mathcal{G}_{\mu}, L_{X_{M}} N_{S}=0$ and $L_{E} N_{S}=0$;
4. Y is tangent to $S=J^{-1}(\mu), L_{E} Y=0$, and $L_{X_{M}} Y=0$, for all $X \in \mathcal{G}_{\mu}$;
5. $i_{E}\left(\mathrm{~d} \gamma_{S}\right)=0$ and, for all $X \in \mathcal{G}_{\mu}, L_{X_{M}} \gamma_{S}=0$ and $i_{X_{M}}\left(\mathrm{~d} \gamma_{S}\right)=0$;
6. $\left.g\right|_{S}$ is a first integral of E and of X_{M}, for all $X \in \mathcal{G}_{\mu}$.

Under these conditions, $\left(\widehat{J^{-1}(\mu)},(\hat{\Lambda}, \hat{E}), \hat{\mathcal{N}}\right)$ is a Jacobi-Nijenhuis manifold obtained from $(M,(\Lambda, E), \mathcal{N})$ by reduction via $\left(J^{-1}(\mu), F\right)$.

Proof. An easy computation shows that the condition 2 of Theorem 5.1 follows from hypotheses $1-3$. On the other hand, from 4-6 of Proposition 6.2, conditions 3-5 of Theorem 5.1 also hold. Taking into account the previous comments, the proof is concluded.

As observed in [11], the vector sub-bundle $T\left(J^{-1}(\mu)\right) \cap F$ of $T\left(J^{-1}(\mu)\right)$ is the tangent bundle to the orbits of the restriction to $G_{\mu} \times J^{-1}(\mu)$ of the action ϕ^{\prime} of G_{μ} on M defined, for all $x \in M$ and $X \in \mathcal{G}_{\mu}$, by $\phi^{\prime}(\exp (t X), x)=\phi\left(\exp (t X), \rho_{t\langle\mu, X\rangle}(x)\right)$, where $\left(\rho_{t}\right)_{t \in \mathbb{R}}$ is the flow of the vector field E. Thus, the Jacobi-Nijenhuis structure $((\hat{\Lambda}, \hat{E}), \hat{\mathcal{N}})$ obtained in Proposition 6.2 is in fact defined on the space $J^{-1}(\mu) / G_{\mu}$ of the orbits of the action ϕ^{\prime} of G_{μ} on $J^{-1}(\mu)$.

References

[1] Y. Kerbrat, Z. Souici-Benhammadi, Variétés de Jacobi et groupoïdes de contact, C.R. Acad. Sci. Paris, Série I 317 (1993) 81-86.
[2] A. Kirillov, Local Lie algebras, Russ. Math. Surv. 31 (1976) 55-75.
[3] Y. Kosmann-Schwarzbach, F. Magri, Poisson-Nijenhuis structures, Ann. I.H.P. 53 (1990) 35-81.
[4] J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in: Élie Cartan et les Mathématiques d'aujourd'hui, Astérisque, Numéro Hors Série, 1985, pp. 257-271.
[5] A. Lichnerowicz, Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures Appl. 57 (1978) 453-488.
[6] F. Magri, C. Morosi, A geometric characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, Università di Milano, Quaderno S 19, 1984.
[7] J.C. Marrero, J. Monterde, E. Padron, Jacobi-Nijenhuis manifolds and compatible Jacobi structures, C.R. Acad. Sci. Paris, Série I 329 (1999) 797-802.
[8] J. Marsden, T. Ratiu, Reduction of Poisson manifolds, Lett. Math. Phys. 11 (1986) 161-169.
[9] K. Mikami, Reduction of local Lie algebra structures, Proc. Am. Math. Soc. 105 (1989) 686-691.
[10] J.M. Nunes da Costa, Réduction des variétés de Jacobi, C.R. Acad. Sci. Paris, Série I 308 (1989) 101-103.
[11] J.M. Nunes da Costa, Une généralisation, pour les variétés de Jacobi, du théorème de Marsden-Weinstein, C.R. Acad. Sci. Paris, Série I 310 (1990) 411-414.
[12] J.M. Nunes da Costa, Compatible Jacobi manifolds: geometry and reduction, J. Phys. A 31 (1998) 1025-1033.
[13] F. Petalidou, J.M. Nunes da Costa, Local structure of Jacobi-Nÿenhuis manifolds, J. Geom. Phys., in press.
[14] I. Vaisman, Reduction of Poisson-Nijenhuis manifolds, J. Geom. Phys. 19 (1996) 90-98.

[^0]: * Corresponding author.

 E-mail addresses: jmcosta@mat.uc.pt (J.M. Nunes da Costa), fpetalid@mat.uc.pt (F. Petalidou).
 ${ }^{1}$ This work was partially supported by CMUC-FCT and PRAXIS.
 ${ }^{2}$ This work was partially supported by CMUC-FCT.

[^1]: ${ }^{3}$ Obviously, the bracket considered in condition 2 of Theorem 2.1 is the Poisson bracket on (M, Λ).

