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Abstract

A reduction theorem for Jacobi—Nijenhuis manifolds is established and its relation with the
reduction of homogeneous Poisson—Nijenhuis structures is shown. Reduction under Lie group
actions is also studied. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The notion of Jacobi—Nijenhuis structure was introduced by Marrero et al. [7]. Recently,
the authors gave, in [13], a more strict definition of that structure which generalises, in a
natural way, the notion of Poisson—Nijenhuis manifold introduced by Magri and Morosi
[3,6] for better understanding the completely integrable hamiltonian systems.

In this paper, we intend to study the reduction of Jacobi—Nijenhuis structures. Mainly,
we define a foliation on a submanifold of a Jacobi—Nijenhuis manifold in such a way
that the manifold of the leaves is also endowed with a Jacobi—Nijenhuis structure. Since
a Jacobi—Nijenhuis manifold carries a Jacobi structure and, on the other hand, there is a
close relation between Jacobi—Nijenhuis manifolds and homogeneous Poisson—Nijenhuis
manifolds, we were inspired in some technical arguments used in the reduction methods of
both Jacobi [9,10] and Poisson—Nijenhuis manifolds [14], in order to achieve our goal.
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This paper is organised as follows. In Section 2, we review some basic facts about Jacobi
manifolds, including the reduction method. In Section 3, we give a reduction theorem for
homogeneous Poisson—Nijenhuis manifolds, which is adapted from the Poisson—Nijenhuis
reduction theorem of Vaisman [14]. Section 4 is devoted to Jacobi—Nijenhuis manifolds. We
recall the essential definitions and the notions of associated homogeneous Poisson—Nijenhuis
manifold and conformal equivalence. In Section 5, we establish a reduction theorem for
Jacobi-Nijenhuis manifolds, we study the reduction of conformally equivalent Jacobi—
Nijenhuis structures and we show how the homogeneous Poisson—Nijenhuis reduction is
related with the Jacobi—Nijenhuis reduction. Section 6 concerns the reduction of Jacobi—
Nijenhuis structures under Lie group actions. The two cases presented are examples of
the reduction theorem of previous section. In the first case, we obtain a Jacobi—Nijenhuis
structure on the space of the orbits of a Lie group action. In the second, the action has a
momentum map and the Jacobi—Nijenhuis structure is defined on a quotient of a level set
of that momentum map.

Notation: In the following, we will denote by/ a C°°-differentiable manifold of finite
dimension, byC> (M) the algebra of *° real-valued functions oM, by 2¥ (M), k € N, the
space ok-forms onM, and byV* (M), k € N, the space of skew-symmetric contravariant
k-tensors onV.

2. Jacobi manifolds

We consider the manifold/ endowed with a 2-tensan and a vector fielde. The
following bracket onC*>° (M),

{f.8} = Adf.dg) + (fdg —gdf. E), f g€ C™(M), 1)
is bilinear and skew-symmetric, and satisfies the Jacobi identity if and only if
[A,A]=-2EAA and [E, A] =0, 2

where [ ] denotes the Schouten bracket [4]. When conditions (2) are verified, thepair)
defines alacobi structureon M and(M, A, E) is called aJacobi manifoldThe bracket (1)
is theJacobi bracketand (C*° (M), {, }) is a local Lie algebra in the sense of Kirillov (cf.
[2]). If the vector fieldE identically vanishes o/, conditions (2) reduce tag, A] = 0,
andM is endowed with @&oisson structure

We denote byA” : T*M — TMand(A, E)* : T*M x R — TM x R the vector bundle
maps associated with and (A, E), respectively; i.e., for ally, 8 sections ofT’*M and
fec>M),

(B, A* (@) = Aa, B) ©)
and
(A, EY¥(a, f) = (A*(@) +TE, —(a, E)). 4)

These vector bundle maps can be considered as homomorphiéiig of )-modules A% :
¥ M) - VIM) and(A, E)* : QY1 (M) x C®(M) — VYM) x C®(M), respectively.
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For any f € C*(M), the vector field o
Xy = A*df) +1E, ®)

is called thehamiltonian vector fielédissociated witty .
The space”(M) x C>®(M) possesses a Lie algebra structure whose brackes
defined as follows (cf. [1]): for all, f), (B, g) € LY (M) x C® (M),

{(a, ), (B, &)} = (v, h), (6)

where

Y 1= L p#g)B — L p#gye — d(A(e, B)) +fLep — glea —ip(a A B),
h:=—A(a, B) + A(a,dg) — AB,df) + (fdg — gdf, E),

(L is the Lie derivative operator).
Leta € C*(M) be a function which vanishes nowhere &h For all f, g € C*®°(M),
we may define

1

This new bracket, }¥ on C*° (M) defines another Jacobi structyr&”?, E4) on M, which
is said to bea-conformalto the initially given one. The two Jacobi structuies, E) and
(A%, E%) are said to beonformally equivalerénd

A =aA, E® = A*(da) + aE. (8)

A homogeneous Poisson manifoM, A, T) is a Poisson manifolgM, A) with a vector
field 7 e V(M) such that

LrA=[T, Al = —A. )

Homogeneous Poisson manifolds are closely related to Jacobi manifolds. With each
Jacobi manifoldM, A, E) we may associate a homogeneous Poisson marii#oldi, 7),
with

- - 9 -~ 9
M=M xR, Aze—f(AjLE/\E) and T=E, (10)

wherer isthe usual coordinate d@[5]. The manifold(M, A, T)is called théPoissonization
of (M, A, E).
Let us now recall the reduction procedure for Jacobi manifolds.

Theorem 2.1(Mikami [9] and Nunes da Costa [10]Let(M, A, E) be a Jacobi manifold
S a submanifold of¥f and F a vector sub-bundle ofsM, which satisfy the following
conditions

1. the distribution TS) F is completely integrable and the foliation Sfdefined by this
distribution is simple, i.e., all the leaves have the same dimension and the afet
leaves has the structure of a differentiable manifold for which the canonical projection
7 : S — §is asubmersion
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2. for any f, h € C*>°(M) with differentialsd f anddh, restricted toS, vanishing onF,
the differentiald{ f, #}, restricted toS, vanishes orr;

3.if FO c T¢M denotes the annihilator of, then (A|s)*(F®) c TS+ F, and the
restriction of E to S is a differentiable section of TS F.

Then, there exists oiﬁa unique Jacobi structureA, E) whose associated bracket is given
forany f, h € C°°(S) and any differentiable extensiorfsof f o & andh of 4 o  with
differentialsd f anddk, restricted toS, vanish onF', by

{f.hyom ={fih}oi, (11)

wherei is the canonicaJ injec}ion af in M.
The Jacobi manifoldS, A, E) is said to have been obtained fraM, A, E) by reduction
via (S, F).

Leta : TsM — TSbe a (projection) vector bundle map such that its restrictionSs
tpe identity map and” C KerA. Then, the Jacobi structuréd, E) on M and(A, E) on
S are related by the formulae:

AL =Timon o Al oA o' Tum, x €35, (12)
Eom=TmnolroEoi. (13)

We remark that the transpose xf'a : T*S — T¢M, is the injection that extends each
linear form onS to a linear form onV/ that vanishes oKer A.

3. Reduction of homogeneous Poisson—Nijenhuis manifolds

This section is devoted to Poisson—Nijenhuis and homogeneous Poisson—Nijenhuis
manifolds. We give a reduction theorem for homogeneous Poisson—Nijenhuis manifolds.
A Nijenhuis operatoion a differentiable manifold/ is a tensor fieldV of type (1, 1)
which has a vanishing Nijenhuis torsion:

T(N)(X, Z) = [NX NZ — N[NX, Z] — N[X,NZ] + N?[X, Z] =0,
X, Z e VY.

A Poisson—Nijenhuis manifoldM, Ag, N) is a Poisson manifold M, Ag) with a
Nijenhuis tensoV which is compatible withAo, i.e.: (i) NAY = AZ'N, where!N is
the transpose a¥, and (i) the maptf o C(Ag, N) : 21(M) x 21 (M) — VY(M) identi-
cally vanishes oM. C (Ap, N) is theMagri—Morosi concomitandf Ag andN [6] defined,
forall (a, B) € 21 (M) x 21(M), by

C (Ao, N)(a, B) = {a, 11— {'Na, BYo — {a, 'NB}o + 'N{a, Blo, (14)

where{, }; is the bracket associated with;, A¥ = NAj, i = 0,1, that defines a Lie
algebra structure of2(M) [3]. N is called therecursion operatoof (M, Ag, N).

Inwhat concerns the reduction procedure, remark that, when a Jacobi manifold is Poisson,
Theorem 2.1 is the Marsden—Ratiu Poisson reduction theorem [8]. This last one was refined
by Vaisman [14] in order to include the Poisson—Nijenhuis case.
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Theorem 3.1(Vaisman [14]). Let (M, A, N) be a Poisson—Nijenhuis manifglf a sub-
manifold ofM and F a vector sub-bundle dfs M verifying conditions 1 and 2 of Theorem
2.1.3 Moreover, ifN|s(TS c TS N|s(F) C F, N|s sends prOJectabIe vector fields to
prolectable vector fields, andi|s)*(F°) c TS then there exists ofi a Poisson— —Nijenhuis
structure(A, N) obtained from(A, N) by reduction via(S, F).

The Poisson tensot on § is associated with the vector bundle maf given by (12)
and the tensol of type (1, 1) on S is given by

N=TrmoroN|sor, o(Tn),?, (15)

wherel, is the restriction of to TSc TsM, which is the identity map, and '), is the
restriction ofT 7 to the horizontal vector sub-bundle Dwith respect to the decomposition
TS=TS & (TSN F).

Let us introduce a tensor fields of type (1, 1) on the submanifold by setting

Ns=hxoN|gor, ™t (16)
Then (15) can be written as

N =TmoNso (Tn), ™ (17)

Definition 3.2. A homogeneous Poisson—Nijenhuis manifg, A, N, T) is a Poisson—
Nijenhuis manifold(M, A, N) with a vector fieldI" € V(M) such that

LrA=—-A and LyN =0. (18)

Remark 3.3. Conditions (18) assure that, for &l € N, Ly Ay = — Ay, where A; is
the Poisson tensor associated thﬁ = NKA. That is, all the members of the hierarchy
(Ag, k € N) are homogeneous Poisson tensorgbwith respect to the vector field.

Theorem 3.1 can easily be adapted to include homogeneous Poisson—Nijenhuis reduction
case.

Theorem 3.4. Let(M, A, N, T) be a homogeneous Poisson—Nijenhuis manif®k sub-
manifold ofM and F a vector sub-bundle dfsM such that all the conditions of Theorem
3.1are verified, and denote by, A, N) the Poisson—Nijenhuis manifold obtained from
(M, A, N) by reduction via(S, F). If the vector fieldl' € V(M) is tangent tos, T'|s ¢
Kerx and AT |g) =Ts € V1(S) is a projectable vector field with prOJect|oT| e V(9),
then($, A, N, T)is a homogeneous Poisson—Nijenhuis manifold

Proof. We only have to prove that; A = —A andL;N = 0.

It is easy to verify that the tensor fieldy, Ns on S is projectable and its projection is
L:N,ie.

T 1 7

L;N =T o LygNgo (Tm), ", (19)

3 Obviously, the bracket considered in condition 2 of Theorem 2.1 is the Poisson bragkét an.
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whereNy is given by (16). Sincé is tangent taS andN|s(TS C TS (19) can be written
as

LiN =Tmoxro(LygNls)or, o (Tm), (20)

Taking into account that 7 N = 0, from (20) we obtairLf]\A/ =0.
On the other hand, for afl, 8 € £21(8),

(L75Als) (T 0 M)(@), (T 0 1)(B)) = —Als((T7 0 1)(@), (T 0 1)(B)).
(21)
The second member of (21) equalgl (@, 8). Using the facts thaf is tangent tc, the two
1-forms'A(Lr, ‘T (@))) andLy |, (T o1)(&)) coincide oriTS and(A|s)*(T9°) ¢ F,
we conclude that the first member of (21) equdls A)(&, B). So,L; A = — A, because
a andg are arbitrary. O

4. Jacobi—Nijenhuis manifolds

The initial definition of Jacobi—Nijenhuis manifold was introduced by Marrero et al. [7].
In [13], the authors gave a more strict definition of this concept. In this section, we review
the essential results concerning this structure needed throughout this article.

Let M be aC*>-differentiable manifold and/ : V(M) x C®(M) — VY(M) x C®(M),
aC>(M)-linear map defined, for allX, f) € VY(M) x C>®(M), by

N(X, f) = (NX+T1Y, (y, X) + g, (22)

whereN is a tensor field of typél, 1) on M, Y € VI (M), y € 21(M) andg € C®(M).
N = (N,Y,y, g) can be considered as a vector bundle nfdp, TM x R — TM x R.
Since the spackl(M) x C>® (M) endowed with the bracket

(X, ), (Z W] =AX,Z],X -h—=Z- ), (23)
(X, ), (Z,h)) € VM) x C®(M,R))?, is a real Lie algebra, we may define the
Nijenhuis torsiori7 (N) of N. Itis aC>(M)-bilinear mapl (N) : (WLH(M) x C®(M))%2 —
V(M) x C>®(M) given by

TW(X, /). (Z, ) =[NX, [),N(Z, )] = NINX, ), (Z, )]

—NI(X, ), N(Z, ]+ N?[(X, ), (Z, b, (24)
(X, ), (Z, h)) € VHM) x C®(M))>.
Definition 4.1. A C*®(M)-linear map\ : VY(M) x C®(M) — VIY(M) x C®(M) is a
Nijenhuis operator o/, if it has a vanishing Nijenhuis torsion.

Suppose now tha is equipped with a Jacobi structutég, Eg) and a Nijenhuis operator
N.Then,we may define a tensor field of type(2, 0) and a vector field:; on M, by setting

(A1, ED* = N o (Ao, Eo)*. (25)
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Recall that two Jacobi structurédg, Eg) and(A1, E1), defined on the same differen-
tiable manifold, are said to lmpatibldf their sum(Ag+ A1, Eg+ E1) is again a Jacobi
structure (cf. [12]).

If one looks for the conditions that assure the gaif, £1), given by (25), defines a new
Jacobi structure oM, compatible with(Ag, Ep), one finds (cf. [7]):

1. A1 is skew-symmetric if and only iV o (Ag, Eo)* = (Ao, Eo)* o 'N, where!\V is
the transpose ok/. This condition is equivalent tNEy = A} (y) + gEy, NAS — ¥ ®
Eo= A}'N + Eg® Y and(y, Eg) = 0. Then,

A =NAf-Y® Eg=ANN+Eo@Y (26)
and
E1 = NEy = A§(y) + gEo. @27)

2. WhenA1 is skew-symmetric(A1, E1) defines a Jacobi structure aé# if and only if,
for all (a, f). (B, h) € 21(M) x C®(M),

TWN) (Ao, Eo)* (@, f). (Ao, E)* (B, b))
= N o (Ao, Eo)*(C((Ao, E0), N)((«, f), (B, h))),

whereC((Ag, Eo), N) is the concomitantof (Ag, Eo) and A\ which is given, for all
(@, ). (B, h) € 2LM) x C>®(M), by

C((Ao, Eo), N)((a, f), (B, 1))
= {(, £), (B, W} — (N (e, £), (B, M}
—{(et, ), W (B, W)}o + N{(a, 1), (B, D}o,

({, }; is the bracket (6) associated with the Jacobi struatdre E;), i = 0, 1).
3. In the case wheréA;, E1) is a Jacobi structure, it is compatible witho, Eo) if and
only if, for all (a, f), (B, h) € 2L(M) x C®(M),

(Ao, E0)*(C((Ao, Eo). N) (@, [), (B, h))) =0.

Definition 4.2. A Jacobi—Nijenhuis manifold M, (A, Eo), V) is a Jacobi manifold
(M, Ag, Eg) with a Nijenhuis operato/' which is compatible with(Ag, Eo), i.e.: (i)
No (Ao, Eo)* = (Ao, Eo)* o' N and (i) the mag Ao, Eo)*oC((Ag, Eg), N) : (2L (M) x
C®(M))? — VI(M) x C®(M) identically vanishes om/. N is called the recursion
operator ofitM, (Ag, Eo), N).

Theorem 4.3(Marrero et al. [7]).Let (Ao, Ep), V) be a Jacobi-Nijenhuis structure on
a differentiable manifoldV. Then, there exists a hierarchyA, Ex), k € N) of Jacobi
structures onM, which are pairwise compatible. For al € N, (A, Ey) is the Jacobi
structure associated with the vector bundle niag, Ex)* given by(Ax, En)* = N* o
(Ao, Eo)*. Moreover, for allk, I € N, the pair ((Ax, Ex), N'') defines a Jacobi-Nijenhuis
structure onM.
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Next proposition shows a relation between Jacobi—Nijenhuis manifolds and homo-
geneous Poisson—Nijenhuis structures.

Proposition 4.4 (Petalidou and Nunes da Costa [13})ith each Jacobi—Nijenhuis man-
ifold (M, (A, E),N), N = (N,Y,y,g), a homogeneous Poisson-Nijenhuis manifold
(M, A, N, T) can be associated, whe(M A, T) is the Poissonization afV/, A, E) and

N is the Nuenhws tensor field ol given by

-~ 0 d
N=N+Y®dt+5®y+g5®dt. (28)

Finally, we recall the notion of conformal equivalence of Jacobi—Nijenhuis structures on
a differentiable manifolav.

Proposition 4.5 (Petalidou and Nunes da Costa [13])et ((Ag, Eo), N) be a Jacobi—
Nijenhuis structure onM, (A1, E1) the Jacobi structure associated witttq, E1)* =
N o (Ao, Eo)*, a € C>®(M) a function which vanishes nowhere, aad¢, Eg) (resp
(Af, Ef)) the Jacobi structure-conformal to( Ao, Eo) (resp (A1, E1)). Then, there exists
a Nijenhuis operatolV? := (N%, Y%, y4, g%) such that(A{, E“)# N o (AE, E“)#
with

N =N-Y® —, Y® =v, (29)
a
da 1 da 1
yi=y+N—— (g+—Lya) —, g =g+ —Lya. (30)
a a a a

The Jacobi-Nijenhuis structuteAg, E5), N') is said to be a-conformal td Ao, Eo), V).

5. Reduction of Jacobi—Nijenhuis manifolds

In this section, we present the main result of this paper: a reduction theorem for Jacobi—
Nijenhuis manifolds. We also study the reduction of conformally equivalent Jacobi—
Nijenhuis structures and the relation between the Jacobi—Nijenhuis and homogeneous
Poisson—Nijenhuis reduction.

Theorem 5.1. Let (M, (A, E),N), N := (N, Y, y, g), be a Jacobi-Nijenhuis manifqld
S a submanifold of/, i : S < M the canonical injection, and’ a vector sub-bundle of
TsM, which satisfy the conditions 1 and 2 of Theor2rhand also

1. (Al)*(F9 c TS andE|s is a section of TS

2. N|s(TS c TS N|s(F) C F and Ng, given by(16), sends projectable vector fields to
projectable vector fields

3. Y is tangent toS and Ys = A(Y|s) € V1(S) is a projectable vector field, where :
TsM — TS is a (projection) vector bundle map such that its restriction to TS is the
identity map and® C Kera;
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4. y|s is a section of TSN F)° and, for all sectionsZ of TSN F, izd ({(Ti)(y|s)) = 0
5. g|s is constant on the leaves §f

Under these conditions, there exists$a Jacobi— Nljenhws structur&/i E), /\7) N =
(N.Y,p 7, 8), where(A, E) is given by(12) and (13)N is given by(17), Y=Tn ox\oY|5,

7 € 91(5) is such that' 7Tz (p) = t(T|)(y|s) and g e C>(S) is given byg o r =
gls. The Jacobi—Nijenhuis manifol¢f, (A, E), N) is said to have been obtained from
(M, (A, E), N) by reduction via S, F).

Proof. Since all the conditions of Theorem 2.1 hafds endowed with a (reduced) Jacobi
structure(A, E), given by (12) and (13). It remains to show that the Nijenhuis operator
N = (N,Y,y,g) also reduces to a Nijenhuis operatvfron S compatible with(A, E)

As in the case of Theorem 3.1, condition 2 guarantees the existence of a tenstrdfeld
type(1, 1) on S, given by (17). From condition 3, the vector figlg = A(Y|s) € V1(S) is
projectable and we denote tfye VS its projection. Also, by hypothesis 4, the 1-form

= Y(Ti)(y|s) on S is projectable and we denote ye 21(S) its projection. Finally,
from condition 5, there exists a functigne C>(8) such tha§ o = gls. Thus, we obtaina
C>(8)- ImearmapN VIS xC®(8) — VLS)xC®(8),N = (N, 7Y, 7, 8),defined as
in (22). Using the properties of the restrictiéfis := (N|s, Yls, ¥Is, gls) of A to the sub-
manifold S, a stralghtforward calculation shows thithas a vanishing Nijenhuis torsion.

In order to conclude that A, E) N) defines a Jacobi— Nuenhws structure&;mve have
to prove that/\/ o (A, E)# (A, EY* o 'N and that(A, E)* o C((A, E), N) = 0. Let

& e 219, f € C°(8), and considet(T7 o 1)(&), which is a section off ¢ M, and
f € C®(M) an extension of o, i.e., f|s = f ox. Then,

Nls((Als, Els)* (T 0 1)(@), fls) = (Als, Els)*(N1s(T 0 2)(@), fls))-
(31)

Since(A|)*({(T o 1)(&)) is a section of A|s)*(F®) c TSandE|s is a section off§
the image by(T'7 o A) of the term vector field of the first member of (31) is equal to

N(A*@)) + fN(E) — (@, E)Y. (32)

Becausér(!Ns(1T7(&))) — IN|s({(T7 o 1)(&)) is a section of TS and (A |5)*((TS?)
C F, we get

Tr o M(Als)*(INIs((T7 0 1)(@)))) = A*(IN(@)),

and we may conclude that the image @ o A) of the term vector field of the second
member of (31) is equal to

AN@) + fAR D) + @, Y)E + fRE. (33)
From (32) and (33), we obtain

N(A*@) + fN(E) — (&, E)Y = A*(N@) + fA*(D) + @, V)E + f3E,
which means that the term vector field&fo (A, £)#(&, f) coincides with the term vector
field of (A, £)* o tA7(@, f). In a similar way, one can prove that the term function of
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No (A EY# @, f) is equal to the term function aij E) o t./\/(oz £). Sinced € 2%(8)
and f € C*°(8) are arbitrary, we obtai\ o (A, E)* = (A, E)* o 'A/. Applying the
same kind of technical arguments as before, we can deduce, after a hard computation, that
(A, EY*oC((A, E), N) =0. O

Remark 5.2. Under the assumptions of Theorem 5. 1(M (A, E), N) is a Jacobi—
Nljenhws manifold which is redumble Vigs, F) to (S, (Ao, Eo), N) then, each member
(Ak, Ek) of the hlerarch)((Ak, Ek) k € N) of Jacobi structures o8, given by Theorem
4.3, is obtained by reduction vig&, F), from the corresponding memben,, E;) of the
hierarchy((Ax, Ex), k € N) of Jacobi structures oM.

Next proposition establishes a relation between reduction and conformal equivalence of
Jacobi—Nijenhuis structures.

Proposition 5.3. Let (M, (A, E),N), N := (N, Y, y, g), be a Jacobi—Nijenhuis mani-
fold, S a submanifold oM and F a vector sub bundle dfs M which satisfy the conditions
of Theoren2.1,and (8, (A, £), V), N := (N, ¥, 7, §), the Jacobi—Nijenhuis manifold
obtained from(M, (A, E), N) by reduction V|a(S, F). Leta € C°°(M) be a function
which vanishes nowhere and such ttiats a section of°, and((A¢, E%), N@) the Jacobi—
Nijenhuis structure onM, a-conformal to ((A, E), N). Then (M, (A%, E4), N?) is
reducible via (S, F) and the reduced structure o is conformally equivalent to
(A, E), N).

Proof. Since d: is a section ofF?, it is easy to check that if the Jacobi structire, E)
on M is reducible via S, F), then thez-conformal Jacobi structuret?, E4) on M is also
reducible via(S, F). Furthermore, condition 1 of Theorem 5.1 holds. Sads equipped
with two (reduced) Jacobi structuréa, E) and(A” E%) that are compatible (cf. [12]).
But A% = A¢ andE“ = E“ wherea € COO(S) is given bya o w = algs; i.e., the Jacobi
structure A, £) and (A4, E%) on S are conformally equivalent.

It remains to check that® := (N9, Y4, y4, g%) verifies the conditions 2-5 of Theorem
5.1. Becaus# is tangent tés and i vanishes oiF’, N%|s(TS C TSandN%|s(F) C F.Let
X € V1(S) be aprojectable vectorfield. Then, we have WatX) = Ng(X)—(da/a, X)Ys
and, for any sectio of TSN F,

da
Lz(N§(X)) = Lz(Ns(X)) — <7, X>LZYS
is also a section of SN F. So,Ng(X) € V1($) and it is a projectable vector field. Also,
a 1 1
Lzg" =Lzg+ Lz; Lya + ZLZ(LYQ) =0,

for all sectionsZ of TSN F, which implies thafg? is constant on the leaves 8f Finally,
for the restrictiony?|s of y¢ € 21(M) to the submanifold, since!N|s(F% c F°, we
obtain thaty?|s is a section of TSN F)? and thati ; d (! Ti(y* |5)) = 0, for all sectionsZ
of TSN F. From the definitions o\ and.\/, it follows thatAV/@ = N4 O
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Examples 5.4.

1. Let M be a five-dimensional*°-differentiable manifold equipped with a Jacobi—
Nijenhuis structuré(A, E), N),N := (N, Y, y, g), whichis given, in local coordinates
(x0, X1, X2, X3, X4), by

T SO A 2 W A R B 3.0
18x 38x3 dx1  Oxp  Ox3  Oxa T 20x0

N 9 + 9 + — 0 ®d
=|—-x4—+— X
4 dxg O0x2  0x3 0

3 0 3 d
- ((M + 5)61) I +3 (XS —x2) —> ® dxy

a 5 ) a

+< X4 E 18_>®dx2_x48_x?,®dx3
1 8 a 3 0 3 0 d

+(§ oxe  Yox T 2% T 2" 35—“5)@““’

v=—22 (14 3a ) -
=—-x]— —X =x1(x2 —x3) | —,
2719 T\ 30T 2T e

3 3
y = E(dm — dxa), 8 = 5%1— Xa.

If F denotes the vector sub-bundleTd¥l generated by the vector fie(d/dx3), it is
easyto checkthatallthe conditions of Theorem 5. 1ho|d(Bo(A E), N) isreducible
via (M, F) to a Jacobi-Nijenhuis manifold?, (A, E£), N'), N := (N, Y, 7, §), where

3 9 d d 0 39

F U IS AR
2 “0xp Ox1 0x1 0x2 28x0

N Bl B 3 0 B
N=|-x1—+—)Qdxg— x4+ =x1 )] — ®dx1 —x4— ®dx2
dx1 0x2

0xg 0x2 2
A 3 +3 9 9\ od
Zxg— —X]— + —Xp— — x4—— X4,
2 Oaxo 18x1 2 23X2 48x !
. 3,9 3
Y= _EX%W’ = —(dxl — dxg), g = 5¥1— Xa.

2. Let (M, A, N) be a Poisson—Nijenhuis manifold which is reducible ¢a F) to a
Poisson—Nijenhuis manifold, A, N) in the sense of Theorem 3.1, anddet C> (M)
be a function that never vanishes. ThéM,, (aA, A#(da)), N), N := (N, 0, 'N(da/
a), 0), is a Jacobi—Nijenhuis manifold. Moreovergife C*° (M) is in the conditions of
Proposition 5.3, from the Poisson—Nijenhuis reduction assumptions and N, one
can deduce tha(tM (aA, A#(da)) N)i is reducible via S, F) to the Jacobi—Nijenhuis
manifold (S, (aA, A*(da)), N'),N := (N, 0,'N(da/a), 0), whereid € C>(8) is given
byaor =als.

Now we are going to present the relationship between the reduction of a Jacobi—

Nijenhuis manifold and the reduction of the corresponding homogeneous Poisson—
Nijenhuis manifold, in the sense of Proposition 4.4.
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Let (M, (A, E), N) be a Jacobi—Nijenhuis manifold, a submanifold ofM, F a
vector sub-bundle dfsM, and(M, A, N, T) the corresponding homogeneous Poisson—
Nijenhuis manifold, in the sense of Proposition 4.4. Consider the submasifeld x R
of M = M x R and the vector sub-bundI€ of T;M given by F = F x {0}. Then,
TSN F = (TSN F) x {0}. We denote by : § < M the canonical injection and by
Ve T~1\7I — TS a (projection) vector bundle map such that its restrictioff fois the
|dent|ty map andF c Keri. We should point out that the vector fiefd = 9/t is
tangent taS, T|S ¢ Keri andA(T|S) e V1(8) is a projectable vector field. Under these
assumptions, we can state the following result.

Proposition 5.5. If the homogeneous Poisson—Nijenhuis manifold, A, N, T) is
reduced via(S, F) to a homogeneous Poisson—Nijenhuis manitdidA, N, T), then the
Jacobi—NiienhuisA mapifoldM, (A, E), N) is reducible via(S, F) to a Jacobi—Nijenhuis
manifold(S, (A, E), N).

Moreovetr (S, A, N,T) is the homogeneous Poisson-Nijenhuis manifold that
corresponds t@sS, (A, E), N) in the sense of Propositioh4.

The following lemma is useful in the proof of Proposition 5.5.

Lemma 5.6. A vector fieldX € V1(S) is projectable by : § — S if and only if
X = X + f(9/91), whereX € V1(S) is projectable byr : S — S and f € C®(S)
is such thatl.; f = 0, for all sectionsZ of TSN F.

Eroof. Taking into account tr]at a vector field € V1(S) can bg_a ertten aX = X +
f£(3/01), with X € V(S) and f € C*(S), and that a section &f S N F can be identified
with a section off'SN F, the conclusion follows readily. |

Proof (of Proposition 5.5). It is known (cf. [10]) that if the Poisson manif ol A) i
obtained from(M, A) by reduction via(S, F), then the Jacobi manifoldS, A, £) i
obtained from(M, A, E) by reduction via(S, F) and, as a consequence BENF =
(TSN F) x {0}, § = § x R. Moreover, sincg® = FO x T*R, (A|3)*(F% c TS im-
plies (A|s)*(F%) c TSand thatE|s is a section offS From N|:(F) C F, we obtain
N|s(F) C F and also thay|s is a section of TSN F)°, and fromN|§(T§) C TS, we get
N|s(TS c TSand we may conclude thaitis tangent ta§. Let X € V1(S) be a projectable
vector field. Using the fact that = X + 39/dr € V1(S) is a projectable vector field and
henceN(X) = Ns(X) + Ys + ((ys. X) + g5)9/9t is also a projectable vector field, from
Lemma 5.6 we conclude thats(X) andYs are projectable vector fields ¢h In addition,
N¢(X) = Ns(X) + ((T)(rls), X)(3/d1) € V(&) is also a projectable vector field and
from Lemma 5.6, for all sectiong of TSN F,

Lz({(Ti)(yls), X) = 0. (34)

is
is

Since (34) holds for all projectable vector fieldon S, and taking into account that, for any
x € S, the projectable vector fields form a basiggs, we deduce that, d(‘Ti(y|s)) =0
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for all sectionsZ of TSN F. Finally, becauseflg(a/at) = Ys + gl|s(d/0t) is a projectable
vector field onS, from Lemma 5.6 we have thdtzg|s = O for all sectionsZ of TSN F.
Thus, we conclude that the Jacobi-Nijenhuis manifdd(A, £), ) is obtained from
(M, (A, E), N) by reduction via s, F).

The last part of the proposition is a consequence of the factthat (T'x, id7gr) and
A= (A, id7R). O

6. Reduction under Lie group actions

Let ¢ be a left action of a Lie grou@ on a Jacobi manifoldM, A, E). ¢ is said to be
a Jacobi actionif, for all h € G, the mapy, : M — M, ¢p(x) = ¢(h, x), is a Jacobi
diffeomorphism. The action is properif the spaceM of the orbits has the structure of a
differentiable manifold for which the canonical projection M — M is a submersion.

Let G denote the Lie algebra @f. For anyX € G, let X); € V(M) be the fundamental
vector field corresponding t#,

d
Xm(x) = (@ EXp(—X), X))li=0.  x € M.

If the Lie groupG is connected, thea is a Jacobi action if and only if{,,;, A] = 0 and
[Xpy, E]=0,forall X e G.

Proposition6.1. Let(M, (A, E), N),N := (N, Y, y, g), be aJacobi—Nijenhuis manifold,
G a connected Lie group that acts @ with a proper Jacobi actiorp and F the vector
sub-bundle of TM tangent to the orbitspfIf for all X € G, Lx,,N =0, Lx,, Y = 0,
Lx,v = 0,ix,y =0,Lx,g = 0,and N(Xy) = ((X))m, where¢ : G — G is
an endomorphism, then, the spatfeof the orbits ofg is endowed with a structure of a
Jacobi-Nijenhuis manifold obtained frog¥, (A, E), ) by reduction via M, F).

Proof. A straightforward calculation leads to the conclusion that all the conditions of
Theorem 5.1 hold. O

Let us now suppose that the Jacobi actibrof the connected Lie grou on the
Jacobi—Nijenhuis manifoldM, (A, E), N) admits a momentum mag; i.e., a map
J : M — G* whereG* is the dual space of the Lie algebfaof G, such that for all
X € G, Xy = A%((J, X)) + (J, X)E, where(J, X) € C®(M) is given by(J, X)(x) =
(J(x), X), foranyx € M. In addition, we suppose thdtis Ad*-equivariant, i.e.J o ¢, =
Ad; o J, forall h € G, whereAd* is the coadjoint action ofr onG*.

Let 1 € G* be a weakly regular value of. Then,S = J~1(u) is a submanifold of/
and7,J~1(n) = Ker(T,J), for all x € J~1(u). Denote byF the vector sub-bundle of
TsM given by

F={Xu—(nX)E, Xeg} (35)

ThenF N T X)) = {(Xu — (u, X)E, X € G.}, whereg, is the Lie algebra of
the isotropy grougi,,. In [11], we proved tha¥ N 7'(J~%(u)) is a completely integrable
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vector sub-bundle df (J/~1(x)) and, if it has constant rank and defines a simple foliation of

J~Y(w), then(J—1(n), A, E) is a Jacobi manifold obtained frot, A, E) by reduction
via (J~1(w), F). In this reduction procedure, one verifies thats)*(F% c TSandE|s
is a section off S
Keeping the notations of the previous sections, we may establish the following result for
Jacobi—Nijenhuis structures.

Proposition 6.2. Let(M, (A, E), N),N := (N, Y, v, g), be a Jacobi—Nijenhuis manifold
such that the vector field is complete. LeG be a connected Lie group which acts &h
with a left Jacobi action that admits an Aequivariant momentum mah Letu € G* be
a weakly regular value of , S = J~1(u), and F the vector sub-bundle dfsM given by
(35). Suppose that TS F has constant rank and defines a simple foliatiors @nd that
the following conditions hold:

1. TsJoN|s =TsJ;

2.VX € G, Nls(Xp — (1, X)E) = EX))m — (n, E(X))E, whereg : G — G is an
endomorphism

.V¥Xeg,, Lx,,Ns=0andLgNg = 0;

. YistangenttoS = J~X(w), LgY = 0,andLy, ¥ = 0,forall X € G,;

. ig(dys) =0and, forallX € G, Lx,,ys = 0andiy,, (dys) = 0;

. gls is afirstintegral ofE and of X, forall X € G,,.

o0 W

Under these conditions/—1(n). (A, ), A7) is a Jacobi—Nijenhuis manifold obtained
from (M, (A, E), N) by reduction vialJ ~1(u), F).

Proof. An easy computation shows that the condition 2 of Theorem 5.1 follows from
hypotheses 1-3. On the other hand, from 4—6 of Proposition 6.2, conditions 3—5 of Theorem
5.1 also hold. Taking into account the previous comments, the proof is concluded.]

As observed in [11], the vector sub-bundl€/ ~1(u)) N F of T(J~1(w)) is the tangent
bundle to the orbits of the restriction &), x J~1(w) of the actionp’ of G, on M defined,
forallx € M andX € G, by ¢'(exp(tX), x) = ¢ (exp(tX), p; (., x)(x)), where(p;),cr iS
the flow of the vector fieldz. Thus, the Jacobi—Nijenhuis structuiel, £), N) obtained
in Proposition 6.2 is in fact defined on the spdcé(u)/GM of the orbits of the actiog’
of G, onJ~Y(w).
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