

Journal of Geometry and Physics 41 (2002) 181-195

www.elsevier.com/locate/jgp

Reduction of Jacobi-Nijenhuis manifolds

J.M. Nunes da Costa^{*,1}, Fani Petalidou²

Departamento de Matemática, Universidade de Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal

Received 26 February 2001; received in revised form 14 May 2001

Abstract

A reduction theorem for Jacobi–Nijenhuis manifolds is established and its relation with the reduction of homogeneous Poisson–Nijenhuis structures is shown. Reduction under Lie group actions is also studied. © 2002 Elsevier Science B.V. All rights reserved.

MSC: 53D05; 53D10; 53D17

Subj. Class .: Differential geometry

Keywords: Jacobi-Nijenhuis manifold; Homogeneous Poisson-Nijenhuis manifold; Reduction

1. Introduction

The notion of Jacobi–Nijenhuis structure was introduced by Marrero et al. [7]. Recently, the authors gave, in [13], a more strict definition of that structure which generalises, in a natural way, the notion of Poisson–Nijenhuis manifold introduced by Magri and Morosi [3,6] for better understanding the completely integrable hamiltonian systems.

In this paper, we intend to study the reduction of Jacobi–Nijenhuis structures. Mainly, we define a foliation on a submanifold of a Jacobi–Nijenhuis manifold in such a way that the manifold of the leaves is also endowed with a Jacobi–Nijenhuis structure. Since a Jacobi–Nijenhuis manifold carries a Jacobi structure and, on the other hand, there is a close relation between Jacobi–Nijenhuis manifolds and homogeneous Poisson–Nijenhuis manifolds, we were inspired in some technical arguments used in the reduction methods of both Jacobi [9,10] and Poisson–Nijenhuis manifolds [14], in order to achieve our goal.

¹ This work was partially supported by CMUC-FCT and PRAXIS.

^{*} Corresponding author.

E-mail addresses: jmcosta@mat.uc.pt (J.M. Nunes da Costa), fpetalid@mat.uc.pt (F. Petalidou).

² This work was partially supported by CMUC-FCT.

This paper is organised as follows. In Section 2, we review some basic facts about Jacobi manifolds, including the reduction method. In Section 3, we give a reduction theorem for homogeneous Poisson–Nijenhuis manifolds, which is adapted from the Poisson–Nijenhuis reduction theorem of Vaisman [14]. Section 4 is devoted to Jacobi–Nijenhuis manifolds. We recall the essential definitions and the notions of associated homogeneous Poisson–Nijenhuis manifold and conformal equivalence. In Section 5, we establish a reduction theorem for Jacobi–Nijenhuis manifolds, we study the reduction of conformally equivalent Jacobi–Nijenhuis structures and we show how the homogeneous Poisson–Nijenhuis reduction is related with the Jacobi–Nijenhuis reduction. Section 6 concerns the reduction of Jacobi–Nijenhuis structures under Lie group actions. The two cases presented are examples of the reduction theorem of previous section. In the first case, we obtain a Jacobi–Nijenhuis structure on the space of the orbits of a Lie group action. In the second, the action has a momentum map and the Jacobi–Nijenhuis structure is defined on a quotient of a level set of that momentum map.

Notation: In the following, we will denote by M a C^{∞} -differentiable manifold of finite dimension, by $C^{\infty}(M)$ the algebra of C^{∞} real-valued functions on M, by $\Omega^{k}(M), k \in \mathbb{N}$, the space of k-forms on M, and by $\mathcal{V}^{k}(M), k \in \mathbb{N}$, the space of skew-symmetric contravariant k-tensors on M.

2. Jacobi manifolds

We consider the manifold M endowed with a 2-tensor Λ and a vector field E. The following bracket on $C^{\infty}(M)$,

$$\{f,g\} = \Lambda(\mathrm{d}f,\mathrm{d}g) + \langle f\,\mathrm{d}g - g\,\mathrm{d}f,E\rangle, \quad f,g \in C^{\infty}(M),\tag{1}$$

is bilinear and skew-symmetric, and satisfies the Jacobi identity if and only if

$$[\Lambda, \Lambda] = -2E \wedge \Lambda \quad \text{and} \quad [E, \Lambda] = 0, \tag{2}$$

where [,] denotes the Schouten bracket [4]. When conditions (2) are verified, the pair (Λ, E) defines a *Jacobi structure* on M and (M, Λ, E) is called a *Jacobi manifold*. The bracket (1) is the *Jacobi bracket* and $(C^{\infty}(M), \{,\})$ is a local Lie algebra in the sense of Kirillov (cf. [2]). If the vector field E identically vanishes on M, conditions (2) reduce to $[\Lambda, \Lambda] = 0$, and M is endowed with a *Poisson structure*.

We denote by $\Lambda^{\#}: T^*M \to TM$ and $(\Lambda, E)^{\#}: T^*M \times \mathbb{R} \to TM \times \mathbb{R}$ the vector bundle maps associated with Λ and (Λ, E) , respectively; i.e., for all α, β sections of T^*M and $f \in C^{\infty}(M)$,

$$\langle \beta, \Lambda^{\#}(\alpha) \rangle = \Lambda(\alpha, \beta) \tag{3}$$

and

$$(\Lambda, E)^{\#}(\alpha, f) = (\Lambda^{\#}(\alpha) + fE, -\langle \alpha, E \rangle).$$
(4)

These vector bundle maps can be considered as homomorphisms of $C^{\infty}(M)$ -modules, $\Lambda^{\#}$: $\Omega^{1}(M) \to \mathcal{V}^{1}(M)$ and $(\Lambda, E)^{\#}: \Omega^{1}(M) \times C^{\infty}(M) \to \mathcal{V}^{1}(M) \times C^{\infty}(M)$, respectively. J.M. Nunes da Costa, F. Petalidou/Journal of Geometry and Physics 41 (2002) 181–195 183

For any $f \in C^{\infty}(M)$, the vector field on M

$$X_f = \Lambda^{\#}(\mathrm{d}f) + fE,\tag{5}$$

is called the *hamiltonian vector field* associated with f.

The space $\Omega^1(M) \times C^{\infty}(M)$ possesses a Lie algebra structure whose bracket $\{,\}$ is defined as follows (cf. [1]): for all $(\alpha, f), (\beta, g) \in \Omega^1(M) \times C^{\infty}(M)$,

$$\{(\alpha, f), (\beta, g)\} := (\gamma, h), \tag{6}$$

where

$$\begin{split} \gamma &:= L_{\Lambda^{\#}(\alpha)}\beta - L_{\Lambda^{\#}(\beta)}\alpha - \mathrm{d}(\Lambda(\alpha,\beta)) + fL_{E}\beta - gL_{E}\alpha - i_{E}(\alpha \wedge \beta), \\ h &:= -\Lambda(\alpha,\beta) + \Lambda(\alpha,\mathrm{d}g) - \Lambda(\beta,\mathrm{d}f) + \langle f\,\mathrm{d}g - g\,\mathrm{d}f,E \rangle, \end{split}$$

(L is the Lie derivative operator).

Let $a \in C^{\infty}(M)$ be a function which vanishes nowhere on M. For all $f, g \in C^{\infty}(M)$, we may define

$$\{f, g\}^a := \frac{1}{a} \{af, ag\}.$$
(7)

This new bracket {, }^{*a*} on $C^{\infty}(M)$ defines another Jacobi structure (Λ^{a}, E^{a}) on M, which is said to be *a*-conformal to the initially given one. The two Jacobi structures (Λ, E) and (Λ^{a}, E^{a}) are said to be conformally equivalent and

$$\Lambda^a = a\Lambda, \qquad E^a = \Lambda^{\#}(\mathrm{d}a) + aE. \tag{8}$$

A homogeneous Poisson manifold (M, Λ, T) is a Poisson manifold (M, Λ) with a vector field $T \in \mathcal{V}^1(M)$ such that

$$L_T \Lambda = [T, \Lambda] = -\Lambda. \tag{9}$$

Homogeneous Poisson manifolds are closely related to Jacobi manifolds. With each Jacobi manifold (M, Λ, E) we may associate a homogeneous Poisson manifold $(\tilde{M}, \tilde{\Lambda}, \tilde{T})$, with

$$\tilde{M} = M \times \mathbb{R}, \qquad \tilde{\Lambda} = e^{-t} \left(\Lambda + \frac{\partial}{\partial t} \wedge E \right) \quad \text{and} \quad \tilde{T} = \frac{\partial}{\partial t},$$
 (10)

where *t* is the usual coordinate on \mathbb{R} [5]. The manifold $(\tilde{M}, \tilde{\Lambda}, \tilde{T})$ is called the *Poissonization* of (M, Λ, E) .

Let us now recall the reduction procedure for Jacobi manifolds.

Theorem 2.1 (Mikami [9] and Nunes da Costa [10]). Let (M, Λ, E) be a Jacobi manifold, *S* a submanifold of *M* and *F* a vector sub-bundle of T_SM , which satisfy the following conditions:

1. the distribution $TS \cap F$ is completely integrable and the foliation of S defined by this distribution is simple, i.e., all the leaves have the same dimension and the set \hat{S} of leaves has the structure of a differentiable manifold for which the canonical projection $\pi: S \to \hat{S}$ is a submersion;

- 2. for any $f, h \in C^{\infty}(M)$ with differentials df and dh, restricted to S, vanishing on F, the differential $d\{f, h\}$, restricted to S, vanishes on F;
- 3. if $F^0 \subset T^*_S M$ denotes the annihilator of F, then $(\Lambda|_S)^{\#}(F^0) \subset TS + F$, and the restriction of E to S is a differentiable section of TS + F.

Then, there exists on \hat{S} a unique Jacobi structure $(\hat{\Lambda}, \hat{E})$ whose associated bracket is given, for any $\hat{f}, \hat{h} \in C^{\infty}(\hat{S})$ and any differentiable extensions f of $\hat{f} \circ \pi$ and h of $\hat{h} \circ \pi$ with differentials df and dh, restricted to S, vanish on F, by

$$\{\hat{f},\hat{h}\}\circ\pi = \{f,h\}\circ i,\tag{11}$$

where *i* is the canonical injection of *S* in *M*.

The Jacobi manifold $(\hat{S}, \hat{\Lambda}, \hat{E})$ is said to have been obtained from (M, Λ, E) by reduction via (S, F).

Let $\lambda : T_S M \to TS$ be a (projection) vector bundle map such that its restriction to TS is the identity map and $F \subset Ker \lambda$. Then, the Jacobi structures (Λ, E) on M and $(\hat{\Lambda}, \hat{E})$ on \hat{S} are related by the formulae:

$$\hat{A}_{\pi(x)}^{\#} = T_x \pi \circ \lambda_x \circ A_{i(x)}^{\#} \circ {}^t \lambda_x \circ {}^t T_x \pi, \quad x \in S,$$
(12)

$$\hat{E} \circ \pi = T\pi \circ \lambda \circ E \circ i. \tag{13}$$

We remark that the transpose of λ , ${}^{t}\lambda : T^{*}S \to T_{S}^{*}M$, is the injection that extends each linear form on *S* to a linear form on *M* that vanishes on *Ker* λ .

3. Reduction of homogeneous Poisson-Nijenhuis manifolds

This section is devoted to Poisson–Nijenhuis and homogeneous Poisson–Nijenhuis manifolds. We give a reduction theorem for homogeneous Poisson–Nijenhuis manifolds.

A *Nijenhuis operator* on a differentiable manifold M is a tensor field N of type (1, 1) which has a vanishing Nijenhuis torsion:

$$T(N)(X, Z) = [NX, NZ] - N[NX, Z] - N[X, NZ] + N^{2}[X, Z] = 0,$$

X, Z $\in \mathcal{V}^{1}(M).$

A Poisson–Nijenhuis manifold (M, Λ_0, N) is a Poisson manifold (M, Λ_0) with a Nijenhuis tensor N which is compatible with Λ_0 , i.e.: (i) $N\Lambda_0^{\#} = \Lambda_0^{\# t}N$, where ^tN is the transpose of N, and (ii) the map $\Lambda_0^{\#} \circ C(\Lambda_0, N) : \Omega^1(M) \times \Omega^1(M) \to \mathcal{V}^1(M)$ identically vanishes on M. $C(\Lambda_0, N)$ is the Magri–Morosi concomitant of Λ_0 and N [6] defined, for all $(\alpha, \beta) \in \Omega^1(M) \times \Omega^1(M)$, by

$$C(\Lambda_0, N)(\alpha, \beta) = \{\alpha, \beta\}_1 - \{{}^{\mathsf{t}}N\alpha, \beta\}_0 - \{\alpha, {}^{\mathsf{t}}N\beta\}_0 + {}^{\mathsf{t}}N\{\alpha, \beta\}_0,$$
(14)

where {, }_{*i*} is the bracket associated with Λ_i , $\Lambda_i^{\#} = N^i \Lambda_0^{\#}$, i = 0, 1, that defines a Lie algebra structure on $\Omega^1(M)$ [3]. N is called the *recursion operator* of (M, Λ_0, N) .

In what concerns the reduction procedure, remark that, when a Jacobi manifold is Poisson, Theorem 2.1 is the Marsden–Ratiu Poisson reduction theorem [8]. This last one was refined by Vaisman [14] in order to include the Poisson–Nijenhuis case. **Theorem 3.1** (Vaisman [14]). Let (M, Λ, N) be a Poisson–Nijenhuis manifold, S a submanifold of M and F a vector sub-bundle of $T_S M$ verifying conditions 1 and 2 of Theorem 2.1.³ Moreover, if $N|_S(TS) \subset TS$, $N|_S(F) \subset F$, $N|_S$ sends projectable vector fields to projectable vector fields, and $(\Lambda|_S)^{\#}(F^0) \subset TS$, then there exists on \hat{S} a Poisson–Nijenhuis structure $(\hat{\Lambda}, \hat{N})$, obtained from (Λ, N) by reduction via (S, F).

The Poisson tensor $\hat{\Lambda}$ on \hat{S} is associated with the vector bundle map $\hat{\Lambda}^{\#}$ given by (12) and the tensor \hat{N} of type (1, 1) on \hat{S} is given by

$$\hat{N} = T\pi \circ \lambda \circ N|_{S} \circ \lambda_{h}^{-1} \circ (T\pi)_{h}^{-1},$$
(15)

where λ_h is the restriction of λ to $TS \subset T_S M$, which is the identity map, and $(T\pi)_h$ is the restriction of $T\pi$ to the horizontal vector sub-bundle of TS with respect to the decomposition $TS \equiv T\hat{S} \oplus (TS \cap F)$.

Let us introduce a tensor field N_S of type (1, 1) on the submanifold S by setting

$$N_S = \lambda \circ N|_S \circ \lambda_h^{-1}. \tag{16}$$

Then (15) can be written as

$$\hat{N} = T\pi \circ N_S \circ (T\pi)_h^{-1}. \tag{17}$$

Definition 3.2. A homogeneous Poisson–Nijenhuis manifold (M, Λ, N, T) is a Poisson–Nijenhuis manifold (M, Λ, N) with a vector field $T \in \mathcal{V}^1(M)$ such that

$$L_T \Lambda = -\Lambda \quad \text{and} \quad L_T N = 0. \tag{18}$$

Remark 3.3. Conditions (18) assure that, for all $k \in \mathbb{N}$, $L_T \Lambda_k = -\Lambda_k$, where Λ_k is the Poisson tensor associated with $\Lambda_k^{\#} = N^k \Lambda$. That is, all the members of the hierarchy $(\Lambda_k, k \in \mathbb{N})$ are homogeneous Poisson tensors on M with respect to the vector field T.

Theorem 3.1 can easily be adapted to include homogeneous Poisson–Nijenhuis reduction case.

Theorem 3.4. Let (M, Λ, N, T) be a homogeneous Poisson–Nijenhuis manifold, S a submanifold of M and F a vector sub-bundle of $T_S M$ such that all the conditions of Theorem 3.1 are verified, and denote by $(\hat{S}, \hat{\Lambda}, \hat{N})$ the Poisson–Nijenhuis manifold obtained from (M, Λ, N) by reduction via (S, F). If the vector field $T \in \mathcal{V}^1(M)$ is tangent to $S, T|_S \notin$ $Ker \lambda$ and $\lambda(T|_S) = T_S \in \mathcal{V}^1(S)$ is a projectable vector field with projection $\hat{T} \in \mathcal{V}^1(\hat{S})$, then $(\hat{S}, \hat{\Lambda}, \hat{N}, \hat{T})$ is a homogeneous Poisson–Nijenhuis manifold.

Proof. We only have to prove that $L_{\hat{T}}\hat{A} = -\hat{A}$ and $L_{\hat{T}}\hat{N} = 0$.

It is easy to verify that the tensor field $L_{T_S}N_S$ on \hat{S} is projectable and its projection is $L_{\hat{T}}\hat{N}$, i.e.,

$$L_{\hat{T}}\hat{N} = T\pi \circ L_{T_S}N_S \circ (T\pi)_h^{-1},$$
(19)

³ Obviously, the bracket considered in condition 2 of Theorem 2.1 is the Poisson bracket on (M, Λ) .

where N_S is given by (16). Since T is tangent to S and $N|_S(TS) \subset TS$, (19) can be written as

$$L_{\hat{T}}\hat{N} = T\pi \circ \lambda \circ (L_{T|S}N|_S) \circ \lambda_h^{-1} \circ (T\pi)_h^{-1}.$$
(20)

Taking into account that $L_T N = 0$, from (20) we obtain $L_{\hat{T}} \hat{N} = 0$.

On the other hand, for all $\hat{\alpha}, \hat{\beta} \in \Omega^1(\hat{S})$,

$$(L_{T|s}\Lambda|_{S})({}^{t}(T\pi\circ\lambda)(\hat{\alpha}),{}^{t}(T\pi\circ\lambda)(\hat{\beta})) = -\Lambda|_{S}({}^{t}(T\pi\circ\lambda)(\hat{\alpha}),{}^{t}(T\pi\circ\lambda)(\hat{\beta})).$$
(21)

The second member of (21) equals $-\hat{\Lambda}(\hat{\alpha}, \hat{\beta})$. Using the facts that T is tangent to S, the two 1-forms ${}^{t}\lambda(L_{T_{S}}({}^{t}T\pi(\hat{\alpha})))$ and $L_{T|_{S}}({}^{t}(T\pi\circ\lambda)(\hat{\alpha}))$ coincide on *TS*, and $(\Lambda|_{S})^{\#}((TS)^{0}) \subset F$, we conclude that the first member of (21) equals $(L_{\hat{\tau}}\hat{\Lambda})(\hat{\alpha},\hat{\beta})$. So, $L_{\hat{\tau}}\hat{\Lambda} = -\hat{\Lambda}$, because $\hat{\alpha}$ and $\hat{\beta}$ are arbitrary.

4. Jacobi-Nijenhuis manifolds

The initial definition of Jacobi–Nijenhuis manifold was introduced by Marrero et al. [7]. In [13], the authors gave a more strict definition of this concept. In this section, we review the essential results concerning this structure needed throughout this article.

Let *M* be a C^{∞} -differentiable manifold and $\mathcal{N} : \mathcal{V}^1(M) \times C^{\infty}(M) \to \mathcal{V}^1(M) \times C^{\infty}(M)$, a $C^{\infty}(M)$ -linear map defined, for all $(X, f) \in \mathcal{V}^1(M) \times C^{\infty}(M)$, by

$$\mathcal{N}(X, f) = (NX + fY, \langle \gamma, X \rangle + gf), \tag{22}$$

where N is a tensor field of type (1, 1) on $M, Y \in \mathcal{V}^1(M), \gamma \in \Omega^1(M)$ and $g \in C^{\infty}(M)$. $\mathcal{N} := (N, Y, \gamma, g)$ can be considered as a vector bundle map, $\mathcal{N} : TM \times \mathbb{R} \to TM \times \mathbb{R}$. Since the space $\mathcal{V}^1(M) \times C^\infty(M)$ endowed with the bracket

$$[(X, f), (Z, h)] = ([X, Z], X \cdot h - Z \cdot f),$$
(23)

 $((X, f), (Z, h)) \in (\mathcal{V}^1(M) \times C^{\infty}(M, \mathbf{R}))^2$, is a real Lie algebra, we may define the Nijenhuis torsion $\mathcal{T}(\mathcal{N})$ of \mathcal{N} . It is a $C^{\infty}(M)$ -bilinear map $\mathcal{T}(\mathcal{N})$: $(\mathcal{V}^1(M) \times C^{\infty}(M))^2 \to$ $\mathcal{V}^1(M) \times C^\infty(M)$ given by

$$\mathcal{T}(\mathcal{N})((X, f), (Z, h)) = [\mathcal{N}(X, f), \mathcal{N}(Z, h)] - \mathcal{N}[\mathcal{N}(X, f), (Z, h)] - \mathcal{N}[(X, f), \mathcal{N}(Z, h)] + \mathcal{N}^{2}[(X, f), (Z, h)],$$
(24)

 $((X, f), (Z, h)) \in (\mathcal{V}^1(M) \times C^\infty(M))^2.$

Definition 4.1. A $C^{\infty}(M)$ -linear map $\mathcal{N}: \mathcal{V}^1(M) \times C^{\infty}(M) \to \mathcal{V}^1(M) \times C^{\infty}(M)$ is a Nijenhuis operator on M, if it has a vanishing Nijenhuis torsion.

Suppose now that M is equipped with a Jacobi structure (A_0, E_0) and a Nijenhuis operator \mathcal{N} . Then, we may define a tensor field Λ_1 of type (2, 0) and a vector field E_1 on M, by setting

$$(\Lambda_1, E_1)^{\#} = \mathcal{N} \circ (\Lambda_0, E_0)^{\#}.$$
(25)

186

Recall that two Jacobi structures (Λ_0, E_0) and (Λ_1, E_1) , defined on the same differentiable manifold, are said to be *compatible* if their sum $(\Lambda_0 + \Lambda_1, E_0 + E_1)$ is again a Jacobi structure (cf. [12]).

If one looks for the conditions that assure the pair (Λ_1, E_1) , given by (25), defines a new Jacobi structure on M, compatible with (Λ_0, E_0) , one finds (cf. [7]):

1. Λ_1 is skew-symmetric if and only if $\mathcal{N} \circ (\Lambda_0, E_0)^{\#} = (\Lambda_0, E_0)^{\#} \circ {}^t\mathcal{N}$, where ${}^t\mathcal{N}$ is the transpose of \mathcal{N} . This condition is equivalent to $NE_0 = \Lambda_0^{\#}(\gamma) + gE_0$, $N\Lambda_0^{\#} - Y \otimes E_0 = \Lambda_0^{\#t}N + E_0 \otimes Y$ and $\langle \gamma, E_0 \rangle = 0$. Then,

$$\Lambda_1^{\#} = N\Lambda_0^{\#} - Y \otimes E_0 = \Lambda_0^{\#t}N + E_0 \otimes Y$$
(26)

and

$$E_1 = N E_0 = \Lambda_0^{\#}(\gamma) + g E_0.$$
⁽²⁷⁾

2. When Λ_1 is skew-symmetric, (Λ_1, E_1) defines a Jacobi structure on M if and only if, for all $(\alpha, f), (\beta, h) \in \Omega^1(M) \times C^{\infty}(M)$,

$$\mathcal{T}(\mathcal{N})((\Lambda_0, E_0)^{\#}(\alpha, f), (\Lambda_0, E_0)^{\#}(\beta, h)) = \mathcal{N} \circ (\Lambda_0, E_0)^{\#}(\mathcal{C}((\Lambda_0, E_0), \mathcal{N})((\alpha, f), (\beta, h))),$$

where $C((\Lambda_0, E_0), \mathcal{N})$ is the *concomitant* of (Λ_0, E_0) and \mathcal{N} which is given, for all $(\alpha, f), (\beta, h) \in \Omega^1(M) \times C^{\infty}(M)$, by

$$\mathcal{C}((\Lambda_0, E_0), \mathcal{N})((\alpha, f), (\beta, h))$$

= {(\alpha, f), (\beta, h)}_1 - {^t\mathcal{N}(\alpha, f), (\beta, h)}_0
- {(\alpha, f), ^t\mathcal{N}(\beta, h)}_0 + {^t\mathcal{N}(\alpha, f), (\beta, h)}_0,

- ({, }_{*i*} is the bracket (6) associated with the Jacobi structure (Λ_i , E_i), i = 0, 1).
- 3. In the case where (Λ_1, E_1) is a Jacobi structure, it is compatible with (Λ_0, E_0) if and only if, for all $(\alpha, f), (\beta, h) \in \Omega^1(M) \times C^{\infty}(M)$,

$$(\Lambda_0, E_0)^{\#}(\mathcal{C}((\Lambda_0, E_0), \mathcal{N})((\alpha, f), (\beta, h))) = 0.$$

Definition 4.2. A Jacobi–Nijenhuis manifold $(M, (\Lambda_0, E_0), \mathcal{N})$ is a Jacobi manifold (M, Λ_0, E_0) with a Nijenhuis operator \mathcal{N} which is compatible with (Λ_0, E_0) , i.e.: (i) $\mathcal{N} \circ (\Lambda_0, E_0)^{\#} = (\Lambda_0, E_0)^{\#} \circ^t \mathcal{N}$ and (ii) the map $(\Lambda_0, E_0)^{\#} \circ \mathcal{C}((\Lambda_0, E_0), \mathcal{N}) : (\Omega^1(M) \times C^{\infty}(M))^2 \to \mathcal{V}^1(M) \times C^{\infty}(M)$ identically vanishes on M. \mathcal{N} is called the recursion operator of $(M, (\Lambda_0, E_0), \mathcal{N})$.

Theorem 4.3 (Marrero et al. [7]). Let $((\Lambda_0, E_0), \mathcal{N})$ be a Jacobi–Nijenhuis structure on a differentiable manifold M. Then, there exists a hierarchy $((\Lambda_k, E_k), k \in \mathbb{N})$ of Jacobi structures on M, which are pairwise compatible. For all $k \in \mathbb{N}$, (Λ_k, E_k) is the Jacobi structure associated with the vector bundle map $(\Lambda_k, E_k)^{\#}$ given by $(\Lambda_k, E_k)^{\#} = \mathcal{N}^k \circ$ $(\Lambda_0, E_0)^{\#}$. Moreover, for all $k, l \in \mathbb{N}$, the pair $((\Lambda_k, E_k), \mathcal{N}^l)$ defines a Jacobi–Nijenhuis structure on M. Next proposition shows a relation between Jacobi–Nijenhuis manifolds and homogeneous Poisson–Nijenhuis structures.

Proposition 4.4 (Petalidou and Nunes da Costa [13]). With each Jacobi–Nijenhuis manifold $(M, (\Lambda, E), \mathcal{N}), \mathcal{N} := (N, Y, \gamma, g)$, a homogeneous Poisson–Nijenhuis manifold $(\tilde{M}, \tilde{\Lambda}, \tilde{N}, \tilde{T})$ can be associated, where $(\tilde{M}, \tilde{\Lambda}, \tilde{T})$ is the Poissonization of (M, Λ, E) and \tilde{N} is the Nijenhuis tensor field on \tilde{M} given by

$$\tilde{N} = N + Y \otimes dt + \frac{\partial}{\partial t} \otimes \gamma + g \frac{\partial}{\partial t} \otimes dt.$$
(28)

Finally, we recall the notion of conformal equivalence of Jacobi–Nijenhuis structures on a differentiable manifold M.

Proposition 4.5 (Petalidou and Nunes da Costa [13]). Let $((\Lambda_0, E_0), \mathcal{N})$ be a Jacobi-Nijenhuis structure on M, (Λ_1, E_1) the Jacobi structure associated with $(\Lambda_1, E_1)^{\#} = \mathcal{N} \circ (\Lambda_0, E_0)^{\#}$, $a \in C^{\infty}(M)$ a function which vanishes nowhere, and (Λ_0^a, E_0^a) (resp. (Λ_1^a, E_1^a)) the Jacobi structure a-conformal to (Λ_0, E_0) (resp. (Λ_1, E_1)). Then, there exists a Nijenhuis operator $\mathcal{N}^a := (N^a, Y^a, \gamma^a, g^a)$ such that $(\Lambda_1^a, E_1^a)^{\#} = \mathcal{N}^a \circ (\Lambda_0^a, E_0^a)^{\#}$, with

$$N^{a} = N - Y \otimes \frac{\mathrm{d}a}{a}, \qquad Y^{a} = Y, \tag{29}$$

$$\gamma^{a} = \gamma + {}^{\mathrm{t}}N\frac{\mathrm{d}a}{a} - \left(g + \frac{1}{a}L_{Y}a\right)\frac{\mathrm{d}a}{a}, \qquad g^{a} = g + \frac{1}{a}L_{Y}a. \tag{30}$$

The Jacobi–Nijenhuis structure $((\Lambda_0^a, E_0^a), \mathcal{N}^a)$ *is said to be a-conformal to* $((\Lambda_0, E_0), \mathcal{N})$.

5. Reduction of Jacobi-Nijenhuis manifolds

In this section, we present the main result of this paper: a reduction theorem for Jacobi– Nijenhuis manifolds. We also study the reduction of conformally equivalent Jacobi– Nijenhuis structures and the relation between the Jacobi–Nijenhuis and homogeneous Poisson–Nijenhuis reduction.

Theorem 5.1. Let $(M, (\Lambda, E), \mathcal{N}), \mathcal{N} := (N, Y, \gamma, g)$, be a Jacobi–Nijenhuis manifold, S a submanifold of $M, i : S \hookrightarrow M$ the canonical injection, and F a vector sub-bundle of T_SM , which satisfy the conditions 1 and 2 of Theorem 2.1 and also

- 1. $(A|_S)^{\#}(F^0) \subset TS$ and $E|_S$ is a section of TS;
- 2. $N|_S(TS) \subset TS$, $N|_S(F) \subset F$ and N_S , given by (16), sends projectable vector fields to projectable vector fields;
- 3. *Y* is tangent to *S* and $Y_S = \lambda(Y|_S) \in \mathcal{V}^1(S)$ is a projectable vector field, where $\lambda : T_S M \to TS$ is a (projection) vector bundle map such that its restriction to *TS* is the identity map and $F \subset \text{Ker } \lambda$;

4. $\gamma|_S$ is a section of $(TS \cap F)^0$ and, for all sections Z of $TS \cap F$, $i_Z d({}^t(Ti)(\gamma|_S)) = 0$; 5. $g|_S$ is constant on the leaves of S.

Under these conditions, there exists on \hat{S} a Jacobi–Nijenhuis structure $((\hat{A}, \hat{E}), \hat{N}), \hat{N} := (\hat{N}, \hat{Y}, \hat{\gamma}, \hat{g})$, where (\hat{A}, \hat{E}) is given by (12) and (13), \hat{N} is given by (17), $\hat{Y} = T\pi \circ \lambda \circ Y|_S$, $\hat{\gamma} \in \Omega^1(\hat{S})$ is such that ${}^tT\pi(\hat{\gamma}) = {}^t(Ti)(\gamma|_S)$, and $\hat{g} \in C^{\infty}(\hat{S})$ is given by $\hat{g} \circ \pi = g|_S$. The Jacobi–Nijenhuis manifold $(\hat{S}, (\hat{A}, \hat{E}), \hat{N})$ is said to have been obtained from $(M, (A, E), \hat{N})$ by reduction via (S, F).

Proof. Since all the conditions of Theorem 2.1 hold, \hat{S} is endowed with a (reduced) Jacobi structure $(\hat{\Lambda}, \hat{E})$, given by (12) and (13). It remains to show that the Nijenhuis operator $\mathcal{N} := (N, Y, \gamma, g)$ also reduces to a Nijenhuis operator $\hat{\mathcal{N}}$ on \hat{S} compatible with $(\hat{\Lambda}, \hat{E})$.

As in the case of Theorem 3.1, condition 2 guarantees the existence of a tensor field \hat{N} of type (1, 1) on \hat{S} , given by (17). From condition 3, the vector field $Y_S = \lambda(Y|_S) \in \mathcal{V}^1(S)$ is projectable and we denote by $\hat{Y} \in \mathcal{V}^1(\hat{S})$ its projection. Also, by hypothesis 4, the 1-form $\gamma_S = {}^t(Ti)(\gamma|_S)$ on S is projectable and we denote by $\hat{\gamma} \in \Omega^1(\hat{S})$ its projection. Finally, from condition 5, there exists a function $\hat{g} \in C^{\infty}(\hat{S})$ such that $\hat{g} \circ \pi = g|_S$. Thus, we obtain a $C^{\infty}(\hat{S})$ -linear map, $\hat{\mathcal{N}} : \mathcal{V}^1(\hat{S}) \times C^{\infty}(\hat{S}) \to \mathcal{V}^1(\hat{S}) \times C^{\infty}(\hat{S})$, $\hat{\mathcal{N}} := (\hat{N}, \hat{Y}, \hat{\gamma}, \hat{g})$, defined as in (22). Using the properties of the restriction $\mathcal{N}|_S := (N|_S, Y|_S, \gamma|_S, g|_S)$ of \mathcal{N} to the submanifold S, a straightforward calculation shows that $\hat{\mathcal{N}}$ has a vanishing Nijenhuis torsion.

In order to conclude that $((\hat{\Lambda}, \hat{E}), \hat{\mathcal{N}})$ defines a Jacobi–Nijenhuis structure on \hat{S} , we have to prove that $\hat{\mathcal{N}} \circ (\hat{\Lambda}, \hat{E})^{\#} = (\hat{\Lambda}, \hat{E})^{\#} \circ {}^{t}\hat{\mathcal{N}}$ and that $(\hat{\Lambda}, \hat{E})^{\#} \circ C((\hat{\Lambda}, \hat{E}), \hat{\mathcal{N}}) = 0$. Let $\hat{\alpha} \in \Omega^{1}(\hat{S}), \hat{f} \in C^{\infty}(\hat{S})$, and consider ${}^{t}(T\pi \circ \lambda)(\hat{\alpha})$, which is a section of $T_{S}^{*}M$, and $f \in C^{\infty}(M)$ an extension of $\hat{f} \circ \pi$, i.e., $f|_{S} = \hat{f} \circ \pi$. Then,

$$\mathcal{N}|_{S}((\Lambda|_{S}, E|_{S})^{\#}({}^{\mathfrak{t}}(T\pi \circ \lambda)(\hat{\alpha}), f|_{S})) = (\Lambda|_{S}, E|_{S})^{\#}({}^{\mathfrak{t}}\mathcal{N}|_{S}({}^{\mathfrak{t}}(T\pi \circ \lambda)(\hat{\alpha}), f|_{S})).$$
(31)

Since $(\Lambda|_S)^{\#}({}^t(T\pi \circ \lambda)(\hat{\alpha}))$ is a section of $(\Lambda|_S)^{\#}(F^0) \subset TS$ and $E|_S$ is a section of *TS*, the image by $(T\pi \circ \lambda)$ of the term vector field of the first member of (31) is equal to

$$\hat{N}(\hat{\Lambda}^{\#}(\hat{\alpha})) + \hat{f}\hat{N}(\hat{E}) - \langle \hat{\alpha}, \hat{E} \rangle \hat{Y}.$$
(32)

Because ${}^{t}\lambda({}^{t}N_{S}({}^{t}T\pi(\hat{\alpha}))) - {}^{t}N|_{S}({}^{t}(T\pi \circ \lambda)(\hat{\alpha}))$ is a section of $(TS)^{0}$ and $(\Lambda|_{S})^{\#}((TS)^{0}) \subset F$, we get

$$T\pi \circ \lambda((\Lambda|_S)^{\#}({}^{\mathsf{t}}N|_S({}^{\mathsf{t}}(T\pi \circ \lambda)(\hat{\alpha})))) = \hat{\Lambda}^{\#}({}^{\mathsf{t}}\hat{N}(\hat{\alpha})),$$

and we may conclude that the image by $(T\pi \circ \lambda)$ of the term vector field of the second member of (31) is equal to

$$\hat{\Lambda}^{\#}({}^{t}\hat{N}(\hat{\alpha})) + \hat{f}\hat{\Lambda}^{\#}(\hat{\gamma}) + \langle \hat{\alpha}, \hat{Y} \rangle \hat{E} + \hat{f}\hat{g}\hat{E}.$$
(33)

From (32) and (33), we obtain

$$\hat{N}(\hat{\Lambda}^{\#}(\hat{\alpha})) + \hat{f}\hat{N}(\hat{E}) - \langle \hat{\alpha}, \hat{E} \rangle \hat{Y} = \hat{\Lambda}^{\#}({}^{t}\hat{N}(\hat{\alpha})) + \hat{f}\hat{\Lambda}^{\#}(\hat{\gamma}) + \langle \hat{\alpha}, \hat{Y} \rangle \hat{E} + \hat{f}\hat{g}\hat{E},$$

which means that the term vector field of $\hat{\mathcal{N}} \circ (\hat{\Lambda}, \hat{E})^{\#}(\hat{\alpha}, \hat{f})$ coincides with the term vector field of $(\hat{\Lambda}, \hat{E})^{\#} \circ {}^{t}\hat{\mathcal{N}}(\hat{\alpha}, \hat{f})$. In a similar way, one can prove that the term function of

189

 $\hat{\mathcal{N}} \circ (\hat{\Lambda}, \hat{E})^{\#}(\hat{\alpha}, \hat{f})$ is equal to the term function of $(\hat{\Lambda}, \hat{E})^{\#} \circ {}^{t}\hat{\mathcal{N}}(\hat{\alpha}, \hat{f})$. Since $\hat{\alpha} \in \Omega^{1}(\hat{S})$ and $\hat{f} \in C^{\infty}(\hat{S})$ are arbitrary, we obtain $\hat{\mathcal{N}} \circ (\hat{\Lambda}, \hat{E})^{\#} = (\hat{\Lambda}, \hat{E})^{\#} \circ {}^{t}\hat{\mathcal{N}}$. Applying the same kind of technical arguments as before, we can deduce, after a hard computation, that $(\hat{\Lambda}, \hat{E})^{\#} \circ \mathcal{C}((\hat{\Lambda}, \hat{E}), \hat{\mathcal{N}}) = 0$.

Remark 5.2. Under the assumptions of Theorem 5.1, if $(M, (\Lambda, E), \mathcal{N})$ is a Jacobi– Nijenhuis manifold which is reducible via (S, F) to $(\hat{S}, (\hat{\Lambda}_0, \hat{E}_0), \hat{\mathcal{N}})$, then, each member $(\hat{\Lambda}_k, \hat{E}_k)$ of the hierarchy $((\hat{\Lambda}_k, \hat{E}_k), k \in \mathbb{N})$ of Jacobi structures on \hat{S} , given by Theorem 4.3, is obtained by reduction via (S, F), from the corresponding member (Λ_k, E_k) of the hierarchy $((\Lambda_k, E_k), k \in \mathbb{N})$ of Jacobi structures on M.

Next proposition establishes a relation between reduction and conformal equivalence of Jacobi–Nijenhuis structures.

Proposition 5.3. Let $(M, (\Lambda, E), \mathcal{N}), \mathcal{N} := (N, Y, \gamma, g)$, be a Jacobi–Nijenhuis manifold, S a submanifold of M and F a vector sub-bundle of $T_S M$ which satisfy the conditions of Theorem 2.1, and $(\hat{S}, (\hat{\Lambda}, \hat{E}), \hat{\mathcal{N}}), \hat{\mathcal{N}} := (\hat{N}, \hat{Y}, \hat{\gamma}, \hat{g})$, the Jacobi–Nijenhuis manifold obtained from $(M, (\Lambda, E), \mathcal{N})$ by reduction via (S, F). Let $a \in C^{\infty}(M)$ be a function which vanishes nowhere and such that da is a section of F^0 , and $((\Lambda^a, E^a), \mathcal{N}^a)$ the Jacobi–Nijenhuis structure on M, a-conformal to $((\Lambda, E), \mathcal{N})$. Then $(M, (\Lambda^a, E^a), \mathcal{N}^a)$ is reducible via (S, F) and the reduced structure on \hat{S} is conformally equivalent to $((\hat{\Lambda}, \hat{E}), \hat{\mathcal{N}})$.

Proof. Since da is a section of F^0 , it is easy to check that if the Jacobi structure (Λ, E) on M is reducible via (S, F), then the *a*-conformal Jacobi structure (Λ^a, E^a) on M is also reducible via (S, F). Furthermore, condition 1 of Theorem 5.1 holds. So, \hat{S} is equipped with two (reduced) Jacobi structures $(\hat{\Lambda}, \hat{E})$ and $(\widehat{\Lambda^a}, \widehat{E^a})$ that are compatible (cf. [12]). But $\widehat{\Lambda^a} = \widehat{\Lambda^a}$ and $\widehat{E^a} = \hat{E}^{\hat{a}}$, where $\hat{a} \in C^{\infty}(\hat{S})$ is given by $\hat{a} \circ \pi = a|_S$; i.e., the Jacobi structures $(\hat{\Lambda}, \hat{E})$ and $(\widehat{\Lambda^a}, \widehat{E^a})$ on \hat{S} are conformally equivalent.

It remains to check that $\mathcal{N}^a := (N^a, Y^a, \gamma^a, g^a)$ verifies the conditions 2–5 of Theorem 5.1. Because *Y* is tangent to *S* and d*a* vanishes on *F*, $N^a|_S(TS) \subset TS$ and $N^a|_S(F) \subset F$. Let $X \in \mathcal{V}^1(S)$ be a projectable vector field. Then, we have that $N_S^a(X) = N_S(X) - \langle da/a, X \rangle Y_S$ and, for any section *Z* of $TS \cap F$,

$$L_Z(N_S^a(X)) = L_Z(N_S(X)) - \left\langle \frac{\mathrm{d}a}{a}, X \right\rangle L_Z Y_S$$

is also a section of $TS \cap F$. So, $N_S^a(X) \in \mathcal{V}^1(S)$ and it is a projectable vector field. Also,

$$L_Z g^a = L_Z g + \left(L_Z \frac{1}{a} \right) L_Y a + \frac{1}{a} L_Z (L_Y a) = 0,$$

for all sections Z of $TS \cap F$, which implies that g^a is constant on the leaves of S. Finally, for the restriction $\gamma^a|_S$ of $\gamma^a \in \Omega^1(M)$ to the submanifold S, since ${}^tN|_S(F^0) \subset F^0$, we obtain that $\gamma^a|_S$ is a section of $(TS \cap F)^0$ and that $i_Z d({}^tTi(\gamma^a|_S)) = 0$, for all sections Z of $TS \cap F$. From the definitions of \mathcal{N}^a and $\hat{\mathcal{N}}$, it follows that $\widehat{\mathcal{N}^a} = \hat{\mathcal{N}}^{\hat{a}}$.

Examples 5.4.

1. Let *M* be a five-dimensional C^{∞} -differentiable manifold equipped with a Jacobi-Nijenhuis structure $((\Lambda, E), \mathcal{N}), \mathcal{N} := (N, Y, \gamma, g)$, which is given, in local coordinates $(x_0, x_1, x_2, x_3, x_4)$, by

$$\begin{split} \Lambda &= \frac{3}{2} \frac{\partial}{\partial x_0} \wedge \left(x_1 \frac{\partial}{\partial x_1} + x_3 \frac{\partial}{\partial x_3} \right) + \frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_3} \wedge \frac{\partial}{\partial x_4}, \qquad E = \frac{3}{2} \frac{\partial}{\partial x_0}, \\ N &= \left(-x_4 \frac{\partial}{\partial x_0} + \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_3} \right) \otimes dx_0 \\ &- \left(\left(x_4 + \frac{3}{2} x_1 \right) \frac{\partial}{\partial x_1} + \frac{3}{2} \left(x_3 - x_2 \right) \frac{\partial}{\partial x_3} \right) \otimes dx_1 \\ &+ \left(-x_4 \frac{\partial}{\partial x_2} + \frac{5}{2} x_1 \frac{\partial}{\partial x_3} \right) \otimes dx_2 - x_4 \frac{\partial}{\partial x_3} \otimes dx_3 \\ &+ \left(\frac{1}{2} x_0 \frac{\partial}{\partial x_0} - x_1 \frac{\partial}{\partial x_1} + \frac{3}{2} x_2 \frac{\partial}{\partial x_2} + \frac{3}{2} x_3 \frac{\partial}{\partial x_3} - x_4 \frac{\partial}{\partial x_4} \right) \otimes dx_4, \\ Y &= -\frac{3}{2} x_1^2 \frac{\partial}{\partial x_1} + \left(\frac{1}{3} x_0 + \frac{3}{2} x_1 (x_2 - x_3) \right) \frac{\partial}{\partial x_3}, \\ \gamma &= \frac{3}{2} (dx_1 - dx_4), \qquad g &= \frac{3}{2} x_1 - x_4. \end{split}$$

If *F* denotes the vector sub-bundle of *TM* generated by the vector field $(\partial/\partial x_3)$, it is easy to check that all the conditions of Theorem 5.1 hold. So, $(M, (\Lambda, E), \mathcal{N})$ is reducible via (M, F) to a Jacobi–Nijenhuis manifold $(\hat{M}, (\hat{\Lambda}, \hat{E}), \hat{\mathcal{N}}), \hat{\mathcal{N}} := (\hat{N}, \hat{Y}, \hat{\gamma}, \hat{g})$, where

$$\begin{split} \hat{A} &= \frac{3}{2} x_1 \frac{\partial}{\partial x_0} \wedge \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_2}, \qquad \hat{E} = \frac{3}{2} \frac{\partial}{\partial x_0}, \\ \hat{N} &= \left(-x_4 \frac{\partial}{\partial x_0} + \frac{\partial}{\partial x_2} \right) \otimes \mathrm{d}x_0 - \left(x_4 + \frac{3}{2} x_1 \right) \frac{\partial}{\partial x_1} \otimes \mathrm{d}x_1 - x_4 \frac{\partial}{\partial x_2} \otimes \mathrm{d}x_2 \\ &+ \left(\frac{1}{2} x_0 \frac{\partial}{\partial x_0} - x_1 \frac{\partial}{\partial x_1} + \frac{3}{2} x_2 \frac{\partial}{\partial x_2} - x_4 \frac{\partial}{\partial x_4} \right) \otimes \mathrm{d}x_4, \\ \hat{Y} &= -\frac{3}{2} x_1^2 \frac{\partial}{\partial x_1}, \qquad \hat{\gamma} = \frac{3}{2} (\mathrm{d}x_1 - \mathrm{d}x_4), \qquad \hat{g} = \frac{3}{2} x_1 - x_4. \end{split}$$

2. Let (M, Λ, N) be a Poisson–Nijenhuis manifold which is reducible via (S, F) to a Poisson–Nijenhuis manifold (Ŝ, Â, Ñ) in the sense of Theorem 3.1, and let a ∈ C[∞](M) be a function that never vanishes. Then, (M, (aΛ, Λ[#](da)), N), N := (N, 0, ^tN(da/a), 0), is a Jacobi–Nijenhuis manifold. Moreover, if a ∈ C[∞](M) is in the conditions of Proposition 5.3, from the Poisson–Nijenhuis reduction assumptions on Λ and N, one can deduce that (M, (aΛ, Λ[#](da)), N) is reducible via (S, F) to the Jacobi–Nijenhuis manifold (Ŝ, (âÂ, Â[#](dâ)), N̂), N̂ := (N̂, 0, ^tN̂(dâ/â), 0), where â ∈ C[∞](Ŝ) is given by â ∘ π = a|_S.

Now we are going to present the relationship between the reduction of a Jacobi– Nijenhuis manifold and the reduction of the corresponding homogeneous Poisson– Nijenhuis manifold, in the sense of Proposition 4.4. Let $(M, (\Lambda, E), \mathcal{N})$ be a Jacobi–Nijenhuis manifold, S a submanifold of M, F a vector sub-bundle of $T_S M$, and $(\tilde{M}, \tilde{\Lambda}, \tilde{N}, \tilde{T})$ the corresponding homogeneous Poisson–Nijenhuis manifold, in the sense of Proposition 4.4. Consider the submanifold $\tilde{S} = S \times \mathbb{R}$ of $\tilde{M} = M \times \mathbb{R}$ and the vector sub-bundle \tilde{F} of $T_{\tilde{S}}\tilde{M}$ given by $\tilde{F} = F \times \{0\}$. Then, $T\tilde{S} \cap \tilde{F} = (TS \cap F) \times \{0\}$. We denote by $\tilde{i} : \tilde{S} \hookrightarrow \tilde{M}$ the canonical injection and by $\tilde{\lambda} : T_{\tilde{S}}\tilde{M} \to T\tilde{S}$ a (projection) vector bundle map such that its restriction to $T\tilde{S}$ is the identity map and $\tilde{F} \subset Ker\tilde{\lambda}$. We should point out that the vector field $\tilde{T} = \partial/\partial t$ is tangent to $\tilde{S}, \tilde{T}|_{\tilde{S}} \notin Ker\tilde{\lambda}$ and $\tilde{\lambda}(\tilde{T}|_{\tilde{S}}) \in \mathcal{V}^1(\tilde{S})$ is a projectable vector field. Under these assumptions, we can state the following result.

Proposition 5.5. If the homogeneous Poisson–Nijenhuis manifold $(\tilde{M}, \tilde{\Lambda}, \tilde{N}, \tilde{T})$ is reduced via (\tilde{S}, \tilde{F}) to a homogeneous Poisson–Nijenhuis manifold $(\hat{\tilde{S}}, \hat{\tilde{\Lambda}}, \hat{\tilde{N}}, \hat{\tilde{T}})$, then the Jacobi–Nijenhuis manifold $(M, (\Lambda, E), \mathcal{N})$ is reducible via (S, F) to a Jacobi–Nijenhuis manifold $(\hat{S}, (\hat{\Lambda}, \hat{E}), \hat{\mathcal{N}})$.

Moreover, $(\hat{\tilde{S}}, \hat{\tilde{A}}, \hat{\tilde{N}}, \hat{\tilde{T}})$ is the homogeneous Poisson–Nijenhuis manifold that corresponds to $(\hat{S}, (\hat{A}, \hat{E}), \hat{\mathcal{N}})$ in the sense of Proposition 4.4.

The following lemma is useful in the proof of Proposition 5.5.

Lemma 5.6. A vector field $\tilde{X} \in \mathcal{V}^1(\tilde{S})$ is projectable by $\tilde{\pi} : \tilde{S} \to \hat{\tilde{S}}$ if and only if $\tilde{X} = X + \tilde{f}(\partial/\partial t)$, where $X \in \mathcal{V}^1(S)$ is projectable by $\pi : S \to \hat{S}$ and $\tilde{f} \in C^{\infty}(\tilde{S})$ is such that $L_Z \tilde{f} = 0$, for all sections Z of $TS \cap F$.

Proof. Taking into account that a vector field $\tilde{X} \in \mathcal{V}^1(\tilde{S})$ can be written as $\tilde{X} = X + \tilde{f}(\partial/\partial t)$, with $X \in \mathcal{V}^1(S)$ and $\tilde{f} \in C^{\infty}(\tilde{S})$, and that a section of $T\tilde{S} \cap \tilde{F}$ can be identified with a section of $TS \cap F$, the conclusion follows readily.

Proof (of Proposition 5.5). It is known (cf. [10]) that if the Poisson manifold (\tilde{S}, \tilde{A}) is obtained from (\tilde{M}, \tilde{A}) by reduction via (\tilde{S}, \tilde{F}) , then the Jacobi manifold $(\hat{S}, \hat{A}, \hat{E})$ is obtained from (M, Λ, E) by reduction via (S, F) and, as a consequence of $T\tilde{S} \cap \tilde{F} = (TS \cap F) \times \{0\}, \tilde{S} = \hat{S} \times \mathbb{R}$. Moreover, since $\tilde{F}^0 = F^0 \times T^*\mathbb{R}, (\tilde{A}|_{\tilde{S}})^{\#}(\tilde{F}^0) \subset T\tilde{S}$ implies $(\Lambda|_S)^{\#}(F^0) \subset TS$ and that $E|_S$ is a section of TS. From $\tilde{N}|_{\tilde{S}}(\tilde{F}) \subset \tilde{F}$, we obtain $N|_S(F) \subset F$ and also that $\gamma|_S$ is a section of $(TS \cap F)^0$, and from $\tilde{N}|_{\tilde{S}}(T\tilde{S}) \subset T\tilde{S}$, we get $N|_S(TS) \subset TS$ and we may conclude that Y is tangent to S. Let $X \in \mathcal{V}^1(S)$ be a projectable vector field. Using the fact that $\tilde{X} = X + \partial/\partial t \in \mathcal{V}^1(\tilde{S})$ is a projectable vector field and hence $\tilde{N}_{\tilde{S}}(\tilde{X}) = N_S(X) + Y_S + (\langle \gamma_S, X \rangle + g_S)\partial/\partial t$ is also a projectable vector field, from Lemma 5.6 we conclude that $N_S(X)$ and Y_S are projectable vector fields on S. In addition, $\tilde{N}_{\tilde{S}}(X) = N_S(X) + \langle^{t}(Ti)(\gamma|_S), X\rangle(\partial/\partial t) \in \mathcal{V}^1(\tilde{S})$ is also a projectable vector field and from Lemma 5.6, for all sections Z of $TS \cap F$,

$$L_Z\langle^{\mathfrak{t}}(T\mathfrak{i})(\gamma|_S), X\rangle = 0. \tag{34}$$

Since (34) holds for all projectable vector fields *X* on *S*, and taking into account that, for any $x \in S$, the projectable vector fields form a basis of $T_x S$, we deduce that $i_Z d({}^tTi(\gamma|_S)) = 0$,

for all sections Z of $TS \cap F$. Finally, because $\tilde{N}_{\tilde{S}}(\partial/\partial t) = Y_S + g|_S(\partial/\partial t)$ is a projectable vector field on \tilde{S} , from Lemma 5.6 we have that $L_Z g|_S = 0$ for all sections Z of $TS \cap F$. Thus, we conclude that the Jacobi–Nijenhuis manifold $(\hat{S}, (\hat{\Lambda}, \hat{E}), \hat{\mathcal{N}})$ is obtained from $(M, (\Lambda, E), \mathcal{N})$ by reduction via (S, F).

The last part of the proposition is a consequence of the fact that $T\tilde{\pi} = (T\pi, id_{T\mathbb{R}})$ and $\tilde{\lambda} = (\lambda, id_{T\mathbb{R}})$.

6. Reduction under Lie group actions

Let ϕ be a left action of a Lie group G on a Jacobi manifold (M, Λ, E) . ϕ is said to be a *Jacobi action* if, for all $h \in G$, the map $\phi_h : M \to M$, $\phi_h(x) = \phi(h, x)$, is a Jacobi diffeomorphism. The action ϕ is *proper* if the space \hat{M} of the orbits has the structure of a differentiable manifold for which the canonical projection $\pi : M \to \hat{M}$ is a submersion.

Let \mathcal{G} denote the Lie algebra of G. For any $X \in \mathcal{G}$, let $X_M \in \mathcal{V}^1(M)$ be the fundamental vector field corresponding to X,

$$X_M(x) = \frac{\mathrm{d}}{\mathrm{d}t}(\phi(\exp(-tX), x))|_{t=0}, \quad x \in M.$$

If the Lie group G is connected, then ϕ is a Jacobi action if and only if $[X_M, \Lambda] = 0$ and $[X_M, E] = 0$, for all $X \in \mathcal{G}$.

Proposition 6.1. Let $(M, (\Lambda, E), \mathcal{N}), \mathcal{N} := (N, Y, \gamma, g)$, be a Jacobi–Nijenhuis manifold, G a connected Lie group that acts on M with a proper Jacobi action ϕ and F the vector sub-bundle of TM tangent to the orbits of ϕ . If for all $X \in \mathcal{G}, L_{X_M}N = 0, L_{X_M}Y = 0,$ $L_{X_M}\gamma = 0, i_{X_M}\gamma = 0, L_{X_M}g = 0, and N(X_M) = (\xi(X))_M, where \xi : \mathcal{G} \to \mathcal{G}$ is an endomorphism, then, the space \hat{M} of the orbits of ϕ is endowed with a structure of a Jacobi–Nijenhuis manifold obtained from $(M, (\Lambda, E), \mathcal{N})$ by reduction via (M, F).

Proof. A straightforward calculation leads to the conclusion that all the conditions of Theorem 5.1 hold. \Box

Let us now suppose that the Jacobi action ϕ of the connected Lie group G on the Jacobi–Nijenhuis manifold $(M, (\Lambda, E), \mathcal{N})$ admits a momentum map J; i.e., a map $J : M \to \mathcal{G}^*$, where \mathcal{G}^* is the dual space of the Lie algebra \mathcal{G} of G, such that for all $X \in \mathcal{G}, X_M = \Lambda^{\#}(d\langle J, X \rangle) + \langle J, X \rangle E$, where $\langle J, X \rangle \in C^{\infty}(M)$ is given by $\langle J, X \rangle(x) = \langle J(x), X \rangle$, for any $x \in M$. In addition, we suppose that J is Ad^* -equivariant, i.e., $J \circ \phi_h = Ad_h^* \circ J$, for all $h \in G$, where Ad^* is the coadjoint action of G on \mathcal{G}^* .

Let $\mu \in \mathcal{G}^*$ be a weakly regular value of J. Then, $S = J^{-1}(\mu)$ is a submanifold of Mand $T_x J^{-1}(\mu) = Ker(T_x J)$, for all $x \in J^{-1}(\mu)$. Denote by F the vector sub-bundle of $T_S M$ given by

$$F = \{X_M - \langle \mu, X \rangle E, \ X \in \mathcal{G}\}.$$
(35)

Then $F \cap T(J^{-1}(\mu)) = \{X_M - \langle \mu, X \rangle E, X \in \mathcal{G}_\mu\}$, where \mathcal{G}_μ is the Lie algebra of the isotropy group G_μ . In [11], we proved that $F \cap T(J^{-1}(\mu))$ is a completely integrable

vector sub-bundle of $T(J^{-1}(\mu))$ and, if it has constant rank and defines a simple foliation of $J^{-1}(\mu)$, then $(\widehat{J^{-1}(\mu)}, \widehat{\Lambda}, \widehat{E})$ is a Jacobi manifold obtained from (M, Λ, E) by reduction via $(J^{-1}(\mu), F)$. In this reduction procedure, one verifies that $(\Lambda|_S)^{\#}(F^0) \subset TS$ and $E|_S$ is a section of *TS*.

Keeping the notations of the previous sections, we may establish the following result for Jacobi–Nijenhuis structures.

Proposition 6.2. Let $(M, (A, E), \mathcal{N}), \mathcal{N} := (N, Y, \gamma, g)$, be a Jacobi–Nijenhuis manifold such that the vector field E is complete. Let G be a connected Lie group which acts on M with a left Jacobi action that admits an Ad*-equivariant momentum map J. Let $\mu \in \mathcal{G}^*$ be a weakly regular value of $J, S = J^{-1}(\mu)$, and F the vector sub-bundle of T_SM given by (35). Suppose that $TS \cap F$ has constant rank and defines a simple foliation of S and that the following conditions hold:

- 1. $T_S J \circ N|_S = T_S J;$
- 2. $\forall X \in \mathcal{G}, N|_{S}(X_{M} \langle \mu, X \rangle E) = (\xi(X))_{M} \langle \mu, \xi(X) \rangle E$, where $\xi : \mathcal{G} \to \mathcal{G}$ is an endomorphism;
- 3. $\forall X \in \mathcal{G}_{\mu}, L_{X_M}N_S = 0 \text{ and } L_EN_S = 0;$
- 4. Y is tangent to $S = J^{-1}(\mu)$, $L_E Y = 0$, and $L_{X_M} Y = 0$, for all $X \in \mathcal{G}_{\mu}$;
- 5. $i_E(d\gamma_S) = 0$ and, for all $X \in \mathcal{G}_{\mu}$, $L_{X_M}\gamma_S = 0$ and $i_{X_M}(d\gamma_S) = 0$;
- 6. $g|_S$ is a first integral of E and of X_M , for all $X \in \mathcal{G}_\mu$.

Under these conditions, $(\widehat{J^{-1}(\mu)}, (\widehat{\Lambda}, \widehat{E}), \widehat{\mathcal{N}})$ is a Jacobi–Nijenhuis manifold obtained from $(M, (\Lambda, E), \mathcal{N})$ by reduction via $(J^{-1}(\mu), F)$.

Proof. An easy computation shows that the condition 2 of Theorem 5.1 follows from hypotheses 1-3. On the other hand, from 4-6 of Proposition 6.2, conditions 3-5 of Theorem 5.1 also hold. Taking into account the previous comments, the proof is concluded.

As observed in [11], the vector sub-bundle $T(J^{-1}(\mu)) \cap F$ of $T(J^{-1}(\mu))$ is the tangent bundle to the orbits of the restriction to $G_{\mu} \times J^{-1}(\mu)$ of the action ϕ' of G_{μ} on M defined, for all $x \in M$ and $X \in \mathcal{G}_{\mu}$, by $\phi'(\exp(tX), x) = \phi(\exp(tX), \rho_t(\mu, X)(x))$, where $(\rho_t)_{t \in \mathbb{R}}$ is the flow of the vector field E. Thus, the Jacobi–Nijenhuis structure $((\hat{A}, \hat{E}), \hat{\mathcal{N}})$ obtained in Proposition 6.2 is in fact defined on the space $J^{-1}(\mu)/G_{\mu}$ of the orbits of the action ϕ' of G_{μ} on $J^{-1}(\mu)$.

References

- Y. Kerbrat, Z. Souici-Benhammadi, Variétés de Jacobi et groupoïdes de contact, C.R. Acad. Sci. Paris, Série I 317 (1993) 81–86.
- [2] A. Kirillov, Local Lie algebras, Russ. Math. Surv. 31 (1976) 55-75.
- [3] Y. Kosmann-Schwarzbach, F. Magri, Poisson-Nijenhuis structures, Ann. I.H.P. 53 (1990) 35-81.
- [4] J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in: Élie Cartan et les Mathématiques d'aujourd'hui, Astérisque, Numéro Hors Série, 1985, pp. 257–271.
- [5] A. Lichnerowicz, Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures Appl. 57 (1978) 453–488.

- [6] F. Magri, C. Morosi, A geometric characterization of integrable Hamiltonian systems through the theory of Poisson–Nijenhuis manifolds, Università di Milano, Quaderno S 19, 1984.
- [7] J.C. Marrero, J. Monterde, E. Padron, Jacobi–Nijenhuis manifolds and compatible Jacobi structures, C.R. Acad. Sci. Paris, Série I 329 (1999) 797–802.
- [8] J. Marsden, T. Ratiu, Reduction of Poisson manifolds, Lett. Math. Phys. 11 (1986) 161–169.
- [9] K. Mikami, Reduction of local Lie algebra structures, Proc. Am. Math. Soc. 105 (1989) 686-691.
- [10] J.M. Nunes da Costa, Réduction des variétés de Jacobi, C.R. Acad. Sci. Paris, Série I 308 (1989) 101-103.
- [11] J.M. Nunes da Costa, Une généralisation, pour les variétés de Jacobi, du théorème de Marsden–Weinstein, C.R. Acad. Sci. Paris, Série I 310 (1990) 411–414.
- [12] J.M. Nunes da Costa, Compatible Jacobi manifolds: geometry and reduction, J. Phys. A 31 (1998) 1025–1033.
- [13] F. Petalidou, J.M. Nunes da Costa, Local structure of Jacobi-Nÿenhuis manifolds, J. Geom. Phys., in press.
- [14] I. Vaisman, Reduction of Poisson–Nijenhuis manifolds, J. Geom. Phys. 19 (1996) 90–98.